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1. Hypothesis testing – introduction

During the previous lectures, we have learned how to provide assessments of the values of
distribution parameters. Frequently, based on the outcome of these estimates, we may wish
to verify some statements concerning the distribution. In order to be able to verify such types
of claims with the use of statistical methods, we will first need to introduce some definitions.
The scheme that is proposed here has been developed in the second half of the XXth century,
as a “compromise” based on works of two “fractions”: on the one hand, led by Ronald Fisher,
and on the other – Jerzy Neyman and Egon Pearson. This procedure is referred to as “Null
Hypothesis Significance Testing” (NHST).

1.1. A Statistical Hypothesis. First of all, we need a hypothesis to be tested. This is the
name for a(ny) statement regarding the probability distribution governing the phenomenon
of interest to the researcher (the random variable observed). We will want to conclude about
the validity of this statement based on observed values of the random variable. Possible
hypothesis include statements such as:

• X1, X2, . . . , Xn are a sample from an exponential distribution.
• X1, X2, . . . , Xn are a sample from a normal distribution (this part is assumed to be

known) with parameters 5 and 1 (this part is uncertain).
• EXi = 7 (the expected value of the distribution is 7).
• VarXi > 1 (the variance of the distribution exceeds 1).
• X1, X2, . . . , Xn are independent.
• EXi = EYj (X1, X2, . . . , Xn and Y1, Y2, . . . , Ym have the same expected value).

Hypotheses may concern the values of distribution parameters (parametric hypotheses
– for example, that the value of parameter λ in a Poisson distribution is equal to 2) or other
properties of the distribution (non-parametric hypotheses – for example, that political
preferences and music preferences of individuals are independent). Hypotheses may also be
classified depending on the distribution they specify – as simple (if a single distribution is spe-
cified, for example exponential with parameter 3) or composite (if more than one distribution
is specified, for example exponential with parameter greater than 3).

Hypotheses may also be classified based on the role they play in the testing procedure,
either as the null or as the alternative hypothesis. The null hypothesis, denoted H0, is the
“basic” hypothesis under consideration. It is deemed true until “proven otherwise” – in our
case, until we find that empirical data are very hard to reconcile with the theory. In many
cases, the main goal of the researcher is to disprove the null hypothesis (that a factor under
consideration is not important, that a received/existing theory is true etc.). The hypothesis,
in many cases, has a speculative character. The alternative hypothesis, usually denoted
Ha or H1, is the statement that we turn towards if the null hypothesis is rejected – a new
theory, a different value of the parameter considered etc. In the testing procedure, we always
specify both: the null and the alternative hypotheses. Testing combinations may include, for
example:

• testing H0 : λ = 1 against H1 : λ = 2;
• testing H0 : λ = 1 against H1 : λ 6= 1;
• testing H0 : λ = 1 against H1 : λ ≥ 1...

1.2. A Statistical Test. A statistical test is a procedure, which – for any possible set of
observed values, i.e. for any sample of observations – leads to one of two possible decisions:
reject the null hypothesisH0 (in favor of the alternativeH1) or do not reject the null hypothesis
(when there are no grounds to reject H0). A formal specification of a test requires specification
of a statistical model first, with a vector of observations X = (X1, X2, . . . , Xn) and a family of
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distributions X ∼ Pθ, where θ ∈ Θ. The easiest way to specify null and alternative hypotheses
is with the use of ranges for the parameter:

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1,

where Θ0 ⊂ Θ and Θ1 ⊂ Θ are nonempty sets such that Θ0 ∩ Θ1 = ∅. Please note that the
null and alternative hypothesis must be mutually exclusive, but they needn’t fill the whole
range Θ.

Once the data and the hypotheses are specified, a statistical test of H0 against H1 is
provided in one of the following ways:

• By specifying a statistic δ : X → {0, 1} such that for any given observation, if the
statistic takes on the value of 1, this is interpreted as a rejection of the null hypothesis
in favor of the alternative (for this data), and if the value of the statistic is 0 – no
grounds to reject the null;
• By specifying the region of rejection (also called the critical region) C = {x ∈
X : δ(x) = 1} – the set of observations for which we reject the null hypothesis;
• By specifying the region of acceptance A = {x ∈ X : δ(x) = 0} – the set of

observations for which we do not have grounds to reject the null hypothesis.

The critical region of a test is frequently provided in the form

C = {x ∈ X : T (x) > c},

where T is a test statistic and c is a critical value. All specification forms (providing δ,
providing C, providing T and c) are equivalent. The range of values of the test statistic T
which lead to the rejection of the null hypothesis may also be referred to as the critical region.

Note that there are many ways of testing a null hypothesis H0 against an alternative H1

– just like there were many ways of estimating the unknown value of a distribution parame-
ter. Some testing procedures are more intuitive than others, however, and some of the tests
will have better properties than others. We will study the ways of designing tests and test
properties later on. At this point we will concentrate on the testing philosophy.

Example:

(1) Let us assume that we want to verify whether a coin is symmetric. Let’s say that we
design the following experiment: we toss the coin n = 400 times and we record H,
the number of heads obtained. In such a case, H has a binomial distribution with the
number of trials equal to 400 and the probability of success in a single trial equal to
p. p is an unknown parameter, the probability of obtaining heads on the coin. In this
case, the statistical model may be specified as follows: H ∼ B(400, p), where p ∈ (0, 1)
is an unknown parameter.

Usually, when we say that we “want to verify whether a coin is symmetric”, this
means that we want to test the null hypothesis H0 : p = 1

2
against the alternative

H1 : p 6= 1
2

(but we may also specify other alternative hypotheses, depending on our
specific goals, fears etc.).

Please note that when thinking about the null hypothesis that p = 1
2
, we see that

some experiment outcomes (such as H = 200, H = 198, H = 205....) are likely, while
others (H = 10, H = 300) are not very likely. This may lead us to us the following
testing procedure: we will reject the null hypothesis if the number of heads is “too
far” from the value that we would expect if the coin was indeed symmetric (namely,
400 · 1

2
= 200). In this case, our test would adopt the following form: we would

specify a test statistic T (x) = |x− 200|, and we would reject the null (in favor of the
alternative) if T (x) > c for some constant c. But how do we choose a specific value of
c?

When designing tests, we must always take into account the fact that our data are random,
which means that there is always a possibility of committing an error of some type. Two
basic types of errors may be defined:
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• when the null hypothesis is in fact true, but our testing procedure leads us to rejecting
it. This is called a type I error. In our coin tossing example, this could happen in
the following scenario: we have a symmetric coin, we toss it 400 times and we get 50
heads. This result is highly unlikely, so we treat it as an indication that the null is
not true and we decide to reject it (committing an error, because the coin was in fact
symmetric).
• when the null hypothesis is in fact false, but our testing procedure does not lead us

to a rejecting decision. This is called the type II error. In our coin tossing example,
this could happen in the following scenario: we have a biased coin, for which the
probability of obtaining heads is 3

4
. We toss it 400 times and we get 205 heads (not

likely, but possible). This result would be perfectly possible if the coin was symmetric,
so we do not see anything suspicious and do not reject the null hypothesis that the
coin is symmetric (although in reality it isn’t).

Formally, if we have a test with critical region C, the probabilities of the errors of the I and
II type can be calculated as follows:

• Pθ(C) for θ ∈ Θ0 – the probability of committing an error of the first type;
• Pθ(A) for θ ∈ Θ1 – the probability of committing an error of the second type.

Obviously, when designing a test we are interested in minimizing these two types of errors.
However, there is a tradeoff between errors of the first and second type: it’s impossible to
minimize both simultaneously. This is because if we want to minimize the error of the Ist
type, we need to avoid situations when we reject the null hypothesis when it is in fact true.
In such cases we will try to treat even unlikely situations as not suspicious (not leading to a
rejection of the null). But this also means that we expand the range of acceptable values in
such a way that many more results which are typical to alternative hypotheses are treated as
not suspicious – do not lead to rejection of the null. This means that the error of the second
type becomes larger.

The probabilities of committing errors of the first and second type depend on the true value
of the unknown parameter. If we want to control them, we will need to take into consideration
the worst case scenario. In case of the error of the first type, we will define the significance
level of the test; a test is said to have a significance level α, if for any θ ∈ Θ0 we have
Pθ(C) ≤ α (in other words, the probability of committing an error of the first type does not
exceed α). On the other hand, we may also define the power of the test (for the alternative
hypothesis) as the probability of not committing an error of the second type (assuming that
the alternative is true), which amounts to Pθ(C) for θ ∈ Θ1. In such a case, we may talk
about the function of the power of a test 1− β: 1− β(θ) = Pθ(C).

Usually, controlling the magnitude of the error of the first type (α) is more important to
the researcher than error of the second type (β). Therefore, in the majority of cases, when
looking for the best test, we will look for tests for a specific significance level α (depending
on the conservatism of the researcher, this might be 0.01, 0.05 etc.) and the smallest error of
the second type possible (the highest power of the test possible).

Going back to our coin tossing example:

(1) Let’s say that we would like our test to have a significance level of α = 0.01. This
means that we want the probability of incorrectly rejecting the null hypothesis not to
exceed 0.01. This means that if we want our test to have a critical region of the form

C = {x : |x− 200| > c},
(i.e. reject the null if the outcome is too large or too small, symmetrically) for this
significance level, we need to find c such that

P 1
2
(|H − 200| > c) = 0.01

From the de Moivre-Laplace theorem we have that P 1
2
(|H − 200| > c) ≈ 2Φ(−c/10);

upon equating this value to 0.01, we see that we need c ≈ 25.8 (that is, at least 26 –
since our variable has discrete values).
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This way, we construct a test with a significance level approximately equal to 0.01.
In case of this test, we reject the null hypothesis if the number of tails is lower than
175 or higher than 225. The critical region of this test is C = {0, 1, . . . , 174} ∪
{226, 227, . . . , 400}; it is two-sided, i.e. we treat too small and too large outcomes as
equally suspicious.

This is nt the only way in which we can define a test statistic for the specified null hypothesis.
We may want to adopt a different approach when we are not equally bothered by p > 1

2
and

p < 1
2

(for example, we use the coin we are testing to decide who pays for a meal and we are
not concerned with a bias in our favor, only concerned with the bias being against us).

(2) In such a case, we might want to test the null p = 1
2

against the alternative p > 1
2

(if

we are concerned about p being larger than 1
2
). In such a setting, we might wish to

use a test statistic T (x) = x− 200 and reject the null (in favor of the alternative that
p > 1

2
) if the value is excessively large. Looking for the critical value for this one-sided

test, for the α = 0.01 significance level, we would have looked for c such that

P 1
2
(H − 200 > c) = 0.01,

and would have adopted c ≈ 23.3. Note that this critical value for the one-sided test
is smaller than the critical value for the two-sided test for the same significance level.
In case of the one-sided alternative, for a significance level α = 0.01 we would reject
the null if the number of heads amounted to 224 or more; the critical region in this
case would be C = {224, 227, . . . , 400}.

Please note that formally, it’s not interdicted to use the T (x) = |x− 200| test statistic for
testing against the alternatives that p > 1

2
, p < 1

2
, p = 1

3
, or p = 3

4
; neither is using the

statistic T (x) = x − 200 for testing against any of these possibilities. The significance levels
of the tests remain the same in all the cases. But this does not mean that all of these tests
are equally sensible. For example, if we tested the null that p = 1

2
against the alternative

that p = 1
3

using the statistic T (x) = x− 200, we would have rejected the null if the number

of heads was too large for p = 1
2
. We would have then adopted the alternative p = 1

3
instead

(even though this would not make any sense!). The significance level would remain the same,
but the error of the second type would become large (or, equivalently, the power of the test
would become small) if the alterative hypothesis were misspecified.

Let us now look at the calculations of the power of the test for the alternative hypothesis.
When calculating the critical value, we only look at the null hypothesis: we did not take into
account the exact form of the alternative hypothesis. On the other hand, when calculating
the power of a test, we need to look at all possible values from the Θ1 range. For the sake
of illustration purposes, at this point we will just look at two specific values: p1 = 3

4
and

p2 = 0.51.

(1) When testing with a test with critical region C = {|X − 200| ≥ 26}, the power for
p1 = 3

4
is:

1− β(
3

4
) = P 3

4
(|X − 200| ≥ 26) = P 3

4
(X ≤ 174 ∪ 226 ≤ X) = P 3

4
(X ≤ 174) + P 3

4
(226 ≤ X)

= P 3
4

X − 400 · 3
4√

3
4
· 1
4
· 400

≤
174− 400 · 3

4√
3
4
· 1
4
· 400

+ P 3
4

X − 400 · 3
4√

3
4
· 1
4
· 400

≥
226− 400 · 3

4√
3
4
· 1
4
· 400

 ≈
which, from the de Moivre-Laplace theorem, may be approximated as

Φ

 −126√
3
4
· 1
4
· 400

+ 1− Φ

 −74√
3
4
· 1
4
· 400

 ≈ 0 + 1− 0 ≈ 1,

which means that the probability of the error of the second type is for p1 = 3
4

almost
equal to 0. This means that this test has an almost perfect ability of distinguishing a
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value of p = 1
2

from a value of p = 3
4
: if the true value of the parameter were p = 3

4
,

the value of the test statistic would have almost always fallen into the critical region
and we would have almost always rejected the null.

(2) If, on the other hand, we use the same test with a critical region C = {|X−200| ≥ 26},
but we look at the power of this test for p2 = 0.51, we have:

1−β(0.51) = P0.51(|X−200| ≥ 26) = P0.51(X ≤ 174∪226 ≤ X) = P0.51(X ≤ 174)+P0.51(226 ≤ X)

= P0.51

(
X − 400 · 0.51√
0.51 · 0.49 · 400

≤ 174− 400 · 0.51√
0.51 · 0.49 · 400

)
+P0.51

(
X − 400 · 0.51√
0.51 · 0.49 · 400

≥ 226− 400 · 0.51√
0.51 · 0.49 · 400

)
≈

which, from the de Moivre-Laplace theorem, may be approximated as

Φ

(
−30√

0.51 · 0.49 · 400

)
+ 1− Φ

(
22√

0.51 · 0.49 · 400

)
≈ 0.001 + 1− 0.986 ≈ 0.015,

which means that the probability of the error of the second type is in this case almost
equal to 1. This means that the test we are using has almost no ability of distinguishing
a value of p = 1

2
from a value of p = 0.51: if the true value of the parameter were

p = 0.51, the value of the test statistic would have fallen into the critical region with
probability similar to the significance level α and we would have almost never rejected
the null.

The example above underlined an important property of hypothesis testing: while con-
structing a test for a given significance level, it needn’t be necessary to take into account the
specific form of the alternative hypothesis (or rather: we might come up with the same test for
different alternative hypotheses). However, the constructed test will have different properties
(in terms of the error of the second type and the power of the test) depending on the exact
specification of the alternative hypothesis. Also, the fact that we reject the null hypothesis in
such a procedure does not imply that the alternative hypothesis is true, nor even “sensible” –
it is up to the researcher to make sure that the alternative makes sense in case that the null
is rejected.

1.3. The Testing Procedure. To sum up, the testing procedure we have proposed includes
the following steps:

(1) Define the statistical model
(2) Pose the hypotheses (H0 and H1)
(3) Choose significance level α
(4) Choose test statistic T (formula) and critical value c /define critical region C
(5) Decide based on whether the value of the test statistic for the observed data falls into

the critical region

A slightly different approach to the testing procedure might also be applied. In this alter-
native scenario, we modify the last two steps of the procedure. In step (4), we do not specify
the critical value c, but rather pose the following question: what would be the significance
level of a test for which the critical value would be equal to the value of the test statistic that
we see for the data? (in other words – what is the chance of obtaining a result as “extreme” –
in terms of the testing scheme – as the one observed?) The answer to this question is denoted
as the p-value of a result. We may then verify the null hypothesis (in step (5)) based on this
p-value: if the p-value is smaller than the adopted significance level, we reject the null. If it
is larger, we do not have grounds to do so.

Going back to our coin tossing example:

(1) Let us assume that we decided to verify the null hypothesis that p = 1
2

against the

alternative that p 6= 1
2

with a test with critical region C = {|H − 200| > c}. Let us
assume that we observe H = 220 heads in 400 trials. What should that tell us in
terms of the null hypothesis? We have that |220− 200| = 20; since we have that

P 1
2
(|H − 200| > 20) ≈ 0.05
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(from the de Moivre-Laplace theorem), we have that the p-value of our observation
(obtaining 220 heads) is approximately 0.05. This value is higher than the adopted
significance level of 0.01 (it is less unlikely in view of the null hypothesis – less extreme),
so we do not have grounds to reject the null hypothesis.

(2) Let us assume that we decided to verify the null hypothesis that p = 1
2

against the

alternative that p ≥ 1
2

with a test with critical region C = {H − 200 > c}. Let us
assume that we observe H = 220 heads in 400 trials. What should that tell us in
terms of the null hypothesis? We have that 220− 200 = 20; since we have that

P 1
2
(H − 200 > 20) ≈ 0.025

(from the de Moivre-Laplace theorem), we have that the p-value of our observation
(obtaining 220 heads) is approximately 0.025. This value is higher than the adopted
significance level of 0.01 (it is less unlikely in view of the null hypothesis – less extreme),
so we do not have grounds to reject the null hypothesis. Please note that the p-value
in the one-sided case is half of the p-value for the two-sided case for the same outcome
of 220 heads. This is due to the fact that when considering the results “as extreme as
the one obtained”, in the one-sided case we only have results larger than 220 heads,
while in the two-sided case we have both those that are larger than 220 and those that
are smaller than 180.
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