Mathematical Statistics
 Anna Janicka

Lecture IX, 26.04.2021

CONFIDENCE INTERVALS - cont. HYPOTHESIS TESTING

Plan for Today

1. Confidence intervals - cont.
2. A statistical hypothesis
3. A statistical test
4. Type I and type II errors
5. Significance level, p-value
6. Testing scheme
7. Power of a test

Most commonly used models for Cl

- Model I (normal): Cl for the mean, variance known
- Model II (normal): Cl for the mean, variance unknown
- Model II (normal): Cl for the variance
- Model III (asymptotic): CI for the mean
- Model IV (asymptotic): CI for the fraction
- Asymptotic model: CI based on MLE

Cl for the mean - Model III - reminder

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distr. with mean (μ) and variance, n - large. Approximate Cl for μ, for a confidence level 1- α :

$$
\left[\bar{x}-u_{1-\alpha / 2} \frac{S}{\sqrt{n}}, \bar{x}+u_{1-\alpha / 2} \frac{S}{\sqrt{n}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from the $\mathrm{N}(0,1)$ distribution, $S=\sqrt{S^{2}}$ for the unbiased estimator of the variance S^{2}. Justification: from CLT, when $n \rightarrow \infty$ we have

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \xrightarrow{D} N(0,1)
$$

Cl for the fraction - Model IV - reminder

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a two-point distribution, n - large.

$$
P_{p}(X=1)=p=1-P_{p}(X=0)
$$

Approximate Cl for p, for a confidence level 1- α :

$$
\left[\hat{p}-u_{1-\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \hat{p}+u_{1-\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from the $N(0,1)$ distribution

Cl for the fraction - Model IV, properties

\square Assessment error: $d=u_{1-\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$
\square Sample size allowing to obtain a given precision (error) d:

$$
n \geq \frac{\hat{p}(1-\hat{p}) u_{1-\alpha / 2}^{2}}{d^{2}}
$$

if we do not know anything about p, we need to consider the worst scenario
where $p=1 / 2$:

$$
n \geq \frac{u_{1-\alpha / 2}^{2}}{4 d^{2}}
$$

$$
\text { e.g. } 1,645^{2} /\left(4^{*} 0,025^{2}\right) \approx 1082
$$

CI on the base of the MLE - Asymptotic model

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distr. with unknown parameter θ, n - large. If $\hat{\theta}=\operatorname{MLE}(\theta)$ is asymptotically normal with an asymptotic variance equal to $1 / 4(\theta)$, i.e.

$$
(\hat{\theta}-\theta) \sqrt{n} \xrightarrow{D} N(0,1 / 1 /(\theta))
$$

and if $l(\hat{\theta})=M L E(I(\theta))$ is consistent, and we have:

$$
(\hat{\theta}-\theta) \sqrt{n l(\hat{\theta})} \xrightarrow{D} N(0,1)
$$

Approximate Cl for θ, for a confidence leyel 1- α :

$$
\left.\hat{\theta}-u_{1-\alpha / 2} \frac{1}{\sqrt{n l_{1}(\hat{\theta})}}, \hat{\theta}+u_{1-\alpha / 2} \frac{1}{\sqrt{n l_{1}(\hat{\theta})}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$

CI on the base of the MLE - Asymptotic model, general case

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distr. with unknown parameter θ, n - large. If $g(\hat{\theta})=g(\operatorname{MLE}(\theta))$ is asymptotically normal with an asymptotic variance equal to ${ }^{\left(g^{\prime}(\theta)\right)^{2}} / 4,(\theta)$, i.e.

$$
(\hat{\theta}-\theta) \sqrt{n} \xrightarrow{D} N\left(0,{ }^{\left(g^{\prime}(\theta)\right)^{2}} / L_{1}(\theta)\right)
$$

and if $I(\hat{\theta})=M L E(I(\theta))$ is consistent, and we have:

$$
(\hat{\theta}-\theta) \sqrt{n I(\hat{\theta})} \xrightarrow{D} N(0,1)
$$

Approximate Cl for $g(\theta)$, for a confidence leyel 1- α :

$$
\left[g(\hat{\theta})-u_{1-\alpha / 2} \frac{\left|g^{\prime}(\hat{\theta})\right|}{\sqrt{n I_{1}(\hat{\theta})}}, g(\hat{\theta})+u_{1-\alpha / 2} \frac{\left|g^{\prime}(\hat{\theta})\right|}{\sqrt{n l_{1}(\hat{\theta})}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$

Cl on the base of the MLE - Example

Let $X_{1}, X_{2}, \ldots, X_{n}$ be an IID sample from a Poisson distr. with unknown parameter θ, n - large.
$\hat{\theta}=M L E(\theta)=\bar{X}$ is asymptotically normal (CLT) with an asymptotic variance equal to $1 / 1(\theta)=\theta$
$\hat{I}(\theta)=1 / \hat{\theta}$ behaves well.
Approximate Cl for θ, for a confidence level 1- α :

$$
\left[\bar{X}-u_{1-\alpha / 2} \frac{\sqrt{\bar{x}}}{\sqrt{n}}, \bar{x}+u_{1-\alpha / 2} \frac{\sqrt{\bar{x}}}{\sqrt{n}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$
For example, if for $n=900$ we had $\bar{X}=4$, then the $90 \% \mathrm{Cl}$ for θ would be $\approx|4-1.645 \sqrt{4 / 900}, 4+1.645 \sqrt{4 / 900}| \approx[3.89,4.11]$

Cl on the base of the MLE - Example cont.

If we wanted to approximate the probability of the outcome $=0$, we would look for $g(\theta)=e^{-\theta}$
$g(\hat{\theta})=g(M L E(\theta))=e^{-\bar{x}}$
And the approximate Cl for $g(\theta)$, for a confidence level 1- α :

$$
\left[e^{-\bar{x}}-u_{1-\alpha / 2} \frac{\sqrt{\bar{X}}}{\sqrt{n}} e^{-\bar{x}}, e^{-\bar{x}}+u_{1-\alpha / 2} \frac{\sqrt{\bar{x}}}{\sqrt{n}} e^{-\bar{x}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$
For example, if for $n=900$ we had $\bar{X}=4$, then the $90 \% \mathrm{Cl}$ for $g(\theta)$ would be

$$
\approx\left|e^{-4}-1.645 \sqrt{4 / 900} e^{-4}, e^{-4}+1.645 \sqrt{4 / 900} e^{-4}\right| \approx[0.016,0.020]
$$

A statistical hypothesis

a statement regarding the probability distribution governing the phenomenon of interest (the random variable observed)

Aim: we want to draw conclusions about the validity of the hypothesis based on observed values of the random variable

Examples of statistical hypotheses

$\square X_{1}, X_{2}, \ldots, X_{n}$ are a sample from an exponential distribution
$\square X_{1}, X_{2}, \ldots, X_{n}$ are a sample from a normal distribution (assumption) with param $(5,1)$
$\square E X_{i}=7$ (the expected value of the distr is 7)
$\square \operatorname{Var} X_{i}>1$ (the variance of the distribution exceeds 1)
$\square X_{1}, X_{2}, \ldots, X_{n}$ are independent
$\square \mathrm{E} X_{1}=\mathrm{E} Y_{j} \quad\left(X_{1}, X_{2}, \ldots, X_{n}\right.$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ have the same expected value)

Types of hypotheses

\square hypothesis

- parametric: concerning the value of distribution parameters
- nonparametric: concerning other properties of the distribution
\square hypothesis
- simple: specifies a single distribution
- composite: specifies a family of distributions

Null and alternative hypotheses

Null hypothesis: "basic", denoted H_{0}
Alternative hypothesis: hypothesis which is accepted if the null is rejected, denoted H_{1}
e.g.:

- $H_{0}: \lambda=1, \quad H_{1}: \lambda \neq 1$
- $H_{0}: \lambda=1, \quad H_{1}: \lambda=2$
- $H_{0}: \lambda=1, \quad H_{1}: \lambda>1$

Null and alternative hypotheses - cont.

The null and alternative hypotheses do not have equal status.
Null hypothesis: a statement, perhaps based on existing theory, deemed true until there appear observations very hard to reconcile with the statement. Speculative hypothesis.
Alternative hypothesis: the possibility taken into account when we are forced to reject the null hypothesis

Statistical test

A procedure, which for any sample of observations (any possible set of values) leads to one of two decisions:

- reject the null hypothesis (in favor of the alternative)
- do not reject the null hypothesis

no grounds to reject H_{0}

Statistical test, formally

Point of departure: statistical model
■ $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ - vector of observations $\in \boldsymbol{X}$
$■ X \sim P_{\theta},\left\{\mathrm{P}_{\theta}: \theta \in \Theta\right\}$ - a family of distributions
Hypotheses H_{0}, H_{1} :

- $H_{0}: \theta \in \Theta_{0}$
- $H_{1}: \theta \in \Theta_{1}$
such that $\Theta_{0} \cap \Theta_{1}=\varnothing$
(the hypotheses are mutually exclusive)

Statistical test, formally - cont.

A test of H_{0} against H_{1} :
Statistic $\delta: \boldsymbol{X} \rightarrow\{0,1\}$
the value 1 is interpreted as rejection of H_{0} (in favor of H_{1}) and 0 as not rejecting H_{0}
Region of rejection (critical region):
$C=\{x \in \boldsymbol{X}: \delta(x)=1\}$ - set of values for which we reject H_{0};
Region of acceptance:
$A=\{x \in \boldsymbol{X}: \delta(x)=0\}$ - set of values for which we do not reject H_{0}

$$
C \cup A=X, C \cap A=\varnothing
$$

Statistical test, formally - cont. (2)

The critical region of a test usually takes the forn

$$
C=\{x \in X: T(x)>\mathrm{c}\}
$$

for a selected statistic T (test statistic) and a value c (critical value)
Equivalent descriptions of a test:
■ specification of T and c

- specification of C
\square specification of δ
in many cases by a critical region one means the range of

Statistical test - example

We want to verify whether a coin is symmetric We toss the coin 400 times
$X \sim B(400, p)$
$\square H_{0}: p=1 / 2, \quad H_{1}: p \neq 1 / 2$
\square Some results may suggest rejection of H_{0} :

- |X - 200| < c - do not reject H_{0}.
- |X $-200 \mid \geq c-$ reject H_{0} in favor of H_{1}.
i.e. $T(x)=|x-200|$
\rightarrow how do we choose c ?

Type I and type II errors

There is always a possibility of error due to randomness of observations

decision	In reality we have	
	H_{0} true	H_{0} false
reject H_{0}	Type I error	OK
do not reject H_{0}	OK	Type II error

$P_{\theta}(C)$ for $\theta \in \Theta_{0}$ - probability of type I error
$P_{\theta}(A)$ for $\theta \in \Theta_{1}$ - probability of type II error there is a trade-off between errors of Ist and IInd type: it's impossible to minimize both simultaneously

Type I and type II errors: graphical interpretation (1)

distributions of the test statistic T assuming that the null and alternative hypotheses are true

Type I and type II errors: graphical interpretation (2)

distributions of the test statistic T assuming that the null and alternative hypotheses are true

Significance level

A test has a significance level α, if for any $\theta \in \Theta_{0}$ we have $P_{\theta}(C) \leq \alpha$.

Usually: we look for tests with minimal probability of type II error for a given level of significance α, usually $=0.1$ or 0.05 or 0.01

Type I error usually more important - not only conservatism

Statistical test - example cont.

Finding the critical range
We want: significance level $\alpha=0.01$
We look for c such that (assuming $p=1 / 2$)

$$
P(|X-200|>c)=0.01
$$

From the de Moivre-Laplace theorem for large n!

$$
\begin{aligned}
P(|X-200|>c) & \approx 2 \Phi(-c / 10), \text { to get } \\
& =0.01 \text { we need } c \approx 25.8
\end{aligned}
$$

For a significance level approximately 0.01 we reject H_{0} when the number of tails is lower than 175 or higher than 225

$$
C=\{0,1, \ldots, 174\} \cup\{226,227, \ldots, 400\}
$$

Statistical test - example cont. (2). p-value

Slightly different question: what if the number of tails were $220(T=20)$?
We have:

$$
P_{1 / 2}(|X-200|>20) \approx 0.05
$$

p-value: probability of type I error, if the value of the test statistic obtained was the critical value

So: p-value for $T=20$ is approximately 0.05

p-value

p-value - probability of obtaining results at least as extreme as the ones obtained (contradicting the null at least as much as those obtained)

decisions:

- p -value $<\alpha$ - reject the null hypothesis
- p -value $\geq \alpha$ - no grounds to reject the null hypothesis

Statistical test - example cont. (3)

 The choice of the alternative hypothesisFor a different alternative...
For example, we lose if tails appear too often.
$\square H_{0}: p=1 / 2, \quad H_{1}: p>1 / 2$
\square Which results would lead to rejecting H_{0} ?

- X - $200 \leq \mathrm{c}$ - do not reject H_{0}.
- X $200>c-$ reject H_{0} in favor of H_{1}.
i.e. $T(x)=x-200$
$H_{0}: p \leq 1 / 2$

Statistical test - example cont. (4)
The choice of the alternative hypothesis
Again, from the de Moivre - Laplace theorem:

$$
P_{1 / 2}(X-200>c) \approx 0.01 \text { for } c \approx 23.3
$$

so for a significance level 0.01 we reject
$H_{0}: p=1 / 2$ in favor of $H_{1}: p>1 / 2$ if the number of tails is at least 224

What if we got 220 tails?
p -value is equal to ≈ 0.025; do not reject H_{0}

Scheme of conducting a statistical test

1. Definition of the statistical model
2. Posing hypotheses: H_{0} and H_{1}
3. Choice of significance level α
4. Choice of the test statistic T / defining the critical region C
5. Decision: depends on whether the value of the test statistic falls into the critical region (or based on comparison of the p -value and α)

Power of the test (for an alternative hypothesis)

$P_{\theta}(C)$ for $\theta \in \Theta_{1}$ - power of the test (for an alternative hypothesis)
Function of the power of a test:

$$
1-\beta: \Theta_{1} \rightarrow[0,1] \text { such that } 1-\beta(\theta)=\mathrm{P}_{\theta}(C)
$$

Usually: we look for tests with a given level of significance and the highest power possible.

Statistical test - example cont. (5)
Power of the test
\square We test $H_{0}: p=1 / 2$ against $H_{1}: p=3 / 4$ with: $T(x)=X-200, C=\{T(x)>23.3\}$
(ie. for a significance level $\alpha=0.01$)
Power of the test:

$$
\begin{aligned}
& 1-\beta(3 / 4)=P(T(x)>23.3 \mid p=3 / 4)=P_{3 / 4}(X>223.3) \\
& \approx 1-\Phi((223.3-300) / 5 \sqrt{ } 3) \approx \Phi(8.85) \approx 1
\end{aligned}
$$

\square But if $H_{1}: p=0.55$
$1-\beta(0.55)=P(T(x)>23.3 \mid p=0.55) \approx 1-\Phi(0.33) \approx 1-$ $0.63 \approx 0.37$
\square And if $H_{1}: p=1 / 4$ for the same T we would get

$$
1-\beta(1 / 4)=P(T(x)>23.3 \mid p=1 / 4) \approx 1-\Phi(14.23) \approx 0
$$

Power of the test: Graphical interpretation (1)

distributions of the test statistic T assuming that the null and alternative hypotheses are true

Power of the test: Graphical interpretation (2)

distributions of the test statistic T assuming that the null and alternative hypotheses are true

type II error

2
Faculty of Economic Sciences

