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Plan for Today

1. Confidence intervals – cont. 

2. A statistical hypothesis

3. A statistical test

4. Type I and type II errors

5. Significance level, p-value

6. Testing scheme

7. Power of a test



Most commonly used models for CI

◼ Model I (normal): CI for the mean, 

variance known

◼ Model II (normal): CI for the mean, 

variance unknown

◼ Model II (normal): CI for the variance

◼ Model III (asymptotic): CI for the mean 

◼ Model IV (asymptotic): CI for the fraction

◼ Asymptotic model: CI based on MLE



CI for the mean – Model III – reminder

Asymptotic model: X1, X2, ..., Xn are an IID sample 

from a distr. with mean () and variance, n – large.

Approximate CI for , for a confidence level 1- :

where u1- /2 is a quantile of rank 1- / 2 from the 

N(0,1) distribution, for the unbiased 

estimator of the variance S2.

Justification: from CLT, when n → we have
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CI for the fraction – Model IV – reminder

Asymptotic model: X1, X2, ..., Xn are an IID sample 

from a two-point distribution, n – large.

Approximate CI for p, for a confidence level 1- :

where u1- /2 is a quantile of rank 1- / 2 from the 

N(0,1) distribution
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CI for the fraction – Model IV, properties

 Assessment error:

 Sample size allowing to obtain a given 

precision (error) d:

if we do not know anything about p, we 

need to consider the worst scenario 

where p=1/2:

e.g. 1,6452/(4 * 0,0252)  1082
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CI on the base of the MLE – Asymptotic 

model

Asymptotic model: X1, X2, ..., Xn are an IID sample 

from a distr. with unknown parameter , n – large.

If                     is asymptotically normal with an 

asymptotic variance equal to       , i.e.

and if                            is consistent, and we have: 

Approximate CI for , for a confidence level 1- :

where u1- /2 is a quantile of rank 1- / 2 from N(0,1)
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CI on the base of the MLE – Asymptotic 

model, general case

Asymptotic model: X1, X2, ..., Xn are an IID sample 

from a distr. with unknown parameter , n – large.

If                            is asymptotically normal with an 

asymptotic variance equal to             , i.e.

and if                            is consistent, and we have: 

Approximate CI for g(), for a confidence level 1- :

where u1- /2 is a quantile of rank 1- / 2 from N(0,1)
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CI on the base of the MLE – Example

Let X1, X2, ..., Xn be an IID sample from a Poisson 

distr. with unknown parameter , n – large.

is asymptotically normal (CLT) with an 

asymptotic variance equal to       

behaves well.

Approximate CI for , for a confidence level 1- :

where u1- /2 is a quantile of rank 1- / 2 from N(0,1)

For example, if for n=900 we had           , then the 90% CI for 

would be 
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CI on the base of the MLE – Example cont.

If we wanted to approximate the probability of the 

outcome = 0, we would look for  

And the approximate CI for g(), for a confidence 

level 1- :

where u1- /2 is a quantile of rank 1- / 2 from N(0,1)

For example, if for n=900 we had           , then the 90% CI for 

g() would be 

XeMLEgg −== ))(()ˆ( 














+− −

−

−−

−

− XXXX e
n

X
uee

n

X
ue 2/12/1 , 

4=X

  ]020.0,016.0[645.1,645.1 4
900

444
900

44 +− −−−− eeee

 −= eg )(



A statistical hypothesis

a statement regarding the probability 

distribution governing the phenomenon of 

interest (the random variable observed)

Aim: we want to draw conclusions about 

the validity of the hypothesis based on 

observed values of the random variable



Examples of statistical hypotheses

 X1, X2, ..., Xn are a sample from an 

exponential distribution

 X1, X2, ..., Xn are a sample from a normal 

distribution (assumption) with param (5, 1)

 EXi = 7 (the expected value of the distr is 7)

 Var Xi > 1 (the variance of the distribution 

exceeds 1)

 X1, X2, ..., Xn are independent

 EXi=EYj (X1, X2, ..., Xn and Y1, Y2, ..., Ym

have the same expected value)



Types of hypotheses

 hypothesis

◼ parametric: concerning the value of distribution 

parameters

◼ nonparametric: concerning other properties of 

the distribution

 hypothesis

◼ simple: specifies a single distribution

◼ composite: specifies a family of distributions



Null and alternative hypotheses

Null hypothesis: “basic”, denoted H0

Alternative hypothesis: hypothesis which is 

accepted if the null is rejected, denoted H1

e.g.:

◼ H0 :  = 1,    H1 :   1

◼ H0 :  = 1,    H1 :  = 2

◼ H0 :  = 1,    H1 :  > 1



Null and alternative hypotheses – cont. 

The null and alternative hypotheses do not 

have equal status.

Null hypothesis: a statement, perhaps based 

on existing theory, deemed true until there 

appear observations very hard to reconcile 

with the statement. Speculative hypothesis.

Alternative hypothesis: the possibility taken 

into account when we are forced to reject 

the null hypothesis



Statistical test

A procedure, which for any sample of 

observations (any possible set of values) 

leads to one of two decisions:

◼ reject the null hypothesis (in favor of the 

alternative)

◼ do not reject the null hypothesis

reject H0

no grounds to reject H0



Statistical test, formally

Point of departure: statistical model

◼ X = (X1, X2, ..., Xn) – vector of observations  X

◼ X ~ P , {P :   } – a family of distributions

Hypotheses H0, H1 :

◼ H0 :   0

◼ H1 :   1

such that 0  1 = 

(the hypotheses are mutually exclusive)



Statistical test, formally – cont. 

A test of H0 against H1 : 

Statistic  : X → {0,1} 

the value 1 is interpreted as rejection of H0 (in favor 

of H1) and 0 as not rejecting H0

Region of rejection (critical region):

C = {x  X :  (x) = 1} – set of values for which we 

reject H0; 

Region of acceptance: 

A = {x  X :  (x) = 0} – set of values for which we 

do not reject H0

C  A = X, C  A = 



Statistical test, formally – cont. (2)

The critical region of a test usually takes the 

form 

C = {x  X : T(x) > c}

for a selected statistic T (test statistic) and 

a value c (critical value)

Equivalent descriptions of a test:

◼ specification of T and c

◼ specification of C

◼ specification of 
in many cases by a critical region one means the range of 

values of the statistic, and not the range of observed values



Statistical test – example

We want to verify whether a coin is symmetric

We toss the coin 400 times

X ~ B(400, p)

 H0 : p = ½,    H1 : p  ½ 

 Some results may suggest rejection of H0:

◼ |X – 200| < c – do not reject H0.

◼ |X – 200|  c – reject H0 in favor of H1.

i.e. T(x) = |x – 200| 

→ how do we choose c?



Type I and type II errors

There is always a possibility of error due to 

randomness of observations

P (C) for   0 – probability of type I error

P (A) for   1 – probability of type II error

decision

In reality we have

H0 true H0 false

reject H0 Type I error OK

do not reject H0 OK Type II error

there is a trade-off between errors of Ist and IInd type: 

it’s impossible to minimize both simultaneously



Type I and type II errors:

graphical interpretation (1)

c

 = 0  = 1

type I error

type II error

distributions of the test statistic T assuming that the null 

and alternative hypotheses are true



Type I and type II errors:

graphical interpretation (2)

c

 = 0  = 1

type I error

type II error

distributions of the test statistic T assuming that the null 

and alternative hypotheses are true



Significance level

A test has a significance level , if for any

  0 we have P (C)  .

Usually: we look for tests with minimal 

probability of type II error for a given level of 

significance , usually = 0.1 or 0.05 or 0.01

Type I error usually more important – not only 

conservatism



Statistical test – example cont.

Finding the critical range

We want: significance level  = 0.01

We look for c such that (assuming p= ½)

P (|X – 200| > c) = 0.01

From the de Moivre-Laplace theorem

P (|X – 200| > c)  2 (-c/10), to get

= 0.01 we need c 25.8

For a significance level approximately 0.01 we 

reject H0 when the number of tails is lower 

than 175 or higher than 225

C = {0,1,...,174}  {226, 227,..., 400}

for large n!



Statistical test – example cont. (2).

p-value

Slightly different question: what if the number 

of tails were 220 (T = 20)?

We have:

P½ (|X – 200| > 20)  0.05

p-value:  probability of type I error, if the value 

of the test statistic obtained was the critical 

value

So: p-value for T = 20 is approximately 0.05



p-value

p-value – probability of obtaining results at 

least as extreme as the ones obtained

(contradicting the null at least as much as 

those obtained)

decisions:

◼ p-value <  – reject the null hypothesis

◼ p-value   – no grounds to reject the null 

hypothesis



Statistical test – example cont. (3)

The choice of the alternative hypothesis

For a different alternative...

For example, we lose if tails appear too often.

 H0 : p = ½,    H1 : p > ½ 

 Which results would lead to rejecting H0 ?

◼ X – 200  c – do not reject H0.

◼ X – 200 > c – reject H0 in favor of H1.

i.e. T(x) = x – 200
we could have 

H0: p  ½ 



Statistical test – example cont.  (4)

The choice of the alternative hypothesis

Again, from the de Moivre – Laplace theorem: 

P½ (X – 200 > c)  0.01 for c  23.3,

so for a significance level 0.01 we reject

H0 : p = ½ in favor of H1 : p > ½ if the 

number of tails is at least 224

What if we got 220 tails?

p-value is equal to  0.025; do not reject H0 



Scheme of conducting a statistical test

1. Definition of the statistical model

2. Posing hypotheses: H0  and H1

3. Choice of significance level 

4. Choice of the test statistic T / defining the 

critical region C

5. Decision: depends on whether the value of 

the test statistic falls into the critical region 

(or based on comparison of the p-value 

and )



Power of the test (for an alternative hypothesis)

P (C) for   1 – power of the test (for an 

alternative hypothesis)

Function of the power of a test:

1- : 1 → [0,1] such that 1- () = P (C)

Usually: we look for tests with a given level of 

significance and the highest power 

possible.



Statistical test – example cont. (5)

Power of the test

 We test H0 : p = ½ against H1 : p = ¾   

with: T(x) = X – 200, C = {T(x) > 23.3}

(i.e. for a significance level  = 0.01)

Power of the test:

1- (¾) = P(T(x) > 23.3 | p = ¾) = P¾ (X>223.3)

1-((223.3-300)/53)  (8.85)  1

 But if H1 : p = 0.55

1- (0.55) = P(T(x) > 23.3 | p = 0.55)  1-(0.33)  1-

0.63  0.37

 And if H1 : p = ¼  for the same T we would get

1- (¼) = P(T(x) > 23.3 | p = ¼)  1-(14.23)  0



Power of the test:

Graphical interpretation (1)

c

 = 0  = 1

type I error

type II error

distributions of the test statistic T assuming that the null 

and alternative hypotheses are true

power of the 

test



Power of the test:

Graphical interpretation (2)

c

 = 0 = 1

type I error

type II error

distributions of the test statistic T assuming that the null 

and alternative hypotheses are true

power of the test




