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Summary: basic (point) estimator properties

Point estimators — statistics which are designed to
provide a single value of the estimator. We can
evaluate them in terms of:

L] bias _] asymptotic
1 variance unblasedness
0 MSE 1 consistency
O efficiency 1 asymptotic normality
1 asymptotic
efficiency




Interval estimation — confidence intervals

[

[

We do not provide a single value estimate,
but rather a lower and an upper bound for
the estimate (the true value will fit into
these bounds with given probabillity)

We estimate with given precision
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Confidence interval

Let g(&) be a function of unknown parameter
g, and let g =g(X,, X,,..., X.) and

g =9g(Xy, X,,...,X,)) be statistics

Then, [9.9] is a confidence interval for g(@)
with a confidence level 1-¢, If for any &

P, (9(Xs, X000 X,) £ 9(0) < G (X Xy X,))2 1




Confidence intervals — use and interpretation

Typically: « Is a small number, for example
1-a=0,950r 1-a = 0,99

The condition from the definition means: the
random interval [g,g] includes the unknown
value g(&) with given (high) probability.

If we calculate the realization of the
confidence interval (e.g. g=1,g =3) then
we CAN’'T say that the unknown parameter is
Included In the range with probability 1-«
anymore!

&

the parameter is either in the interval or not — the event
4 oo iS NOt random, it is just something we don’t know.



Confidence intervals — construction

[J1 The confidence interval depends on the
underlying probabillity distribution

[1 Usually, normal samples are considered
(the distribution most frequently
observed in nature)




Confidence intervals — construction cont.

Convenient method: we look for random
variables which depend on sample data and
parameter values, but whose distributions do not
depend on unknown parameters (pivotal method)
If U =U(X,, X,, ..., X, ) Is such a function, then
we look for confidence intervals [a,b] such that
P(a<U<b)>1-«
Usually we look for ,symmetric” ClI

P, (U <a)£%, P,(U > b)sg
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Most commonly used models

B Model | (normal): CI for the mean,
variance known

B Model Il (normal): Cl for the mean,
variance unknown

Model Il (normal): CI for the variance
Model Il (asymptotic): Cl for the mean
Model IV (asymptotic): ClI for the fraction
Asymptotic model: Cl based on MLE




Cl for the mean — Model |

Normal model: X, X, ..., X, are an IID sample
from N(u, o?), o2 is known.

The CI for u, for a confidence level 1-« :

X

X +u,

O O
—U /0 ﬁ aIZﬁ

where u,_, ,, IS a quantile of rank 1-«/2 for the
N(O,1) distribution




Cl for the mean — Model I, justification:

Point estimate for ;2 MLE(x) = X distribution
: . : v/ . d n
We know the dlstrlbutloniofx. /dggzng’ o
X ~N(u%). —E ~N(0) ‘

Ao
We want: a Cl symmetric around the point estimate
(the distribution of the normalized average Is

symmetric around 0). We have:
P,(Vn(X - 1)/ o] <u)= d(u) - d(-u) = 2(u) 1

=1l-«




Cl for the mean — Model I, properties

[ Error: d =u1_a,2%
N

L1 Length of CI: 2d

[1 Sample size allowing to obtain a given
precision (error) d:

2.2
o u1—05/2

d2

nz=

&



Cl Model | — example phrasing

In a survey of food expenditures for n=400
randomly chosen respondents, the average
weekly amount spent on fruit amounted to
$30. From previous research, we know
that the variance of fruit expenditures is
equal to 5. Assuming that food
expenditures are distributed normally, find
a 95% CI for the average weekly amount
spent.




Cl for the mean — Model I

Normal model: X, X, ..., X, are an IID sample
from N(u, o2), o?is unknown.

The CI for u, for a confidence level 1-« :

= S S

X —t n-1)— —
1—a/2( ) /_n /_n

where t,_, »(n-1) Is a quantile of rank 1-«/2 for
a t-Student distribution with n-1 degrees of
freedom t(n-1), and S =/S* for the unbiased
variance estimatorss.

’>?_I_t1—05/2(n _1)




Cl for the mean — Model I, justification:

Point estimate for 1z MLE(x) = X
We know the distribution of X :
— ) X —u X —u
~N(w, /), ~N(0,D), T = ~t(n-1)
Ao Ao

We want: a Cl symmetric around the point
estimate (the distribution of T Is symmetric
around O) We have:

(]f(x ,u)/S‘<t)

=

S

B
|.A

00




Cl for the mean — Model Il, properties

[
[
[

S
Error: d=t_,.,(n —Dﬁ

Length of CI: 2d

Sample size allowing to obtain a given
precision (error) d:

to be determined on the base of the so-
called Stein’s two-stage procedure — we
need a preliminary assessment of the
variance first
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Stein’s two-stage procedure

1. We collect a preliminary sample X, X, ..., X,

and estimate the variance:
S¢ = no_lZ (X, = X,)?

2. We check whether the sample fulfills the given
condition: we calculate k = St “’é(n -

a) If ny > k then we take the ClI

- So o S
X, —t ~1)-2 X+t (N — )2
l: 0 l—a/2(n0 )\/a 0 + /2(n0 )\/E:|
b) If ny <k then we choose n > k and draw an additional
sample of X 4.1, X 042: ---» X,,- We calculate the mean

for the whole sarmple X1 X5, .y X, and take the Cl

.
0

— S
LX _tl—aIZ(nO _1)ﬁ’ X +t1—a/2(n0 _1)T;}

R



Cl Model Il — example phrasing

In a survey of food expenditures for n=400
randomly chosen respondents, the average
weekly amount spent on fruit amounted to
$30, and the variance of fruit
expenditures amounted to 5. Assuming
that food expenditures are distributed
normally, find a 95% CI for the average

weekly amount spent.




Cl for the variance — Model I

Normal model: X, X, ..., X, are an |lID
sample from N(x, o2)

Cl for o2, for a confidence level 1-«:

- (n-1S?  (n-1S?
_le—alz(n -1 | Zilz(n _1)_

where 72 (n-1)and 7 ,,(n-1) are
qguantiles of rank o/ 2 and 1-a/ 2, respectively,
for a chi-squared distribution with n -1
degrees of freedom




Cl for the variance — Model I, justification

Point estimate for o2; S2
We know the distr.: y - (N=Ygz _ 25 _y)

The chi-squared distribution Is not
symmetric. We want a ,symmetric” Cl, i.e.

we look for [a,b] such that

a a
P2 = —, 2 = —
G(U<a) > PG(U>b) >
SO

a=y,,(n-Dandb =y ,,,(n-1)




Cl for the mean — Model Il

Asymptotic model: X, X, ..., X, are an |ID sample
from a distr. with mean (x) and variance, n — large.

Approximate CI for x4, for a confidence level 1-« :

X _ul—a/Z

S

Jn

X +U

S
1—a/2ﬁ

where u,_,,, IS a quantile of rank 1-«/2 from the
N(0,1) distribution, S =+/S? for the unbiased
estimator of the variance S2.

Justification: from CLT, when n —o we have

X

D
J

>N (0,1

—lLl
S/vn



Cl for the fraction — Model IV

Asymptotic model: X, X, ..., X, are an |ID sample
from a two-point distribution, n — large.

P.(X=1)=p=1-P,(X =0)
Approximate CI for p, for a confidence level 1-« :

A 0(1-p) - p(1-p)
p_ul—a/Z \/pf/ﬁ p) ’p+u1—a/2 \/ \/ﬁ

where u,_,, IS a quantile of rank 1-a/2 from the
N(O,1) distribution




Cl for the fraction — Model IV, justification

The point estimate for the fraction p:
p=MLE(p)=X

We know the asymptotic distribution: from CLT, when
n —oo, we have

p-p -
U=——"=-—vn—25N(0))
VP~ p)

Using U, just like in model I, we get the formula.




Cl for the fraction — Model IV, properties

] Assessment error: g _y, VB(L-p)

Jn

[1 Sample size allowing to obtain a given
precision (error) d:

n > ﬁ(l_SZUfalz
If we do not know anything about p, we

need to consider the worst scenario
where p=1/2:




Cl on the base of the MLE — Asymptotic
model

Asymptotic model: X, X, ..., X, are an |ID sample
from a distr. with unknown parameter &, n — large.

If @=MLE(0) is asymptotically normal with an
asymptotic variance equal to /., i.e.

(6 - 6)Vn—2N(0, ¥ 0)
and if 1(d) =MLE(I(9)) is consistent:

(6 — 0)y/nl(§) —2—>N(0,)
Approximate ClI for 6, for a confidence level 1-«

n

0 —u L L
l-a/2 W’ l—a/ZW

/ where Ui, /2 1S @ quantile of rank 1-a/2 from N(0,1)

nnnnnnnnnnnnnnnnnnnnnnnn
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Cl on the base of the MLE — Asymptotic
model, general case

Asymptotic model: X, X, ..., X, are an |ID sample
from a distr. with unknown parameter &, n — large.

If 9(8) = 9(MLE(8)) is asymptotically normal with an
asymptotic variance equal to @/, , i.e.

(0 —6)Yn —2N(0,9 @/ )

and if 1(8) =MLE(I(9)) is consistent:
(6 - O)1nl(6) —2—N(0,)

Approximate CI for g(6’) for a confidence level 1-«:

19'(6)] 19'(6)]

é Y1 /2 0 1-a /2
9O e £ Gy 9O e 15

/ where Ui, /2 1S @ quantile of rank 1-a/2 from N(0,1)

nnnnnnnnnnnnnnnnnnnnnnnn
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Cl on the base of the MLE — Example

Let X,, X,, ..., X, be an IID sample from a Poisson
distr. with unknown parameter 6, n — large.

6 =MLE(#) = X is asymptotically normal (CLT) with an

asymptotic variance equal to X, =¢

1(0)=1/6 behaves well.

Approximate ClI for g, for a confidence level 1-«::

X_ul— /2E’X+u1— /2£
““Jn ““Jn

where l_Jl_a/Z IS a quantile of rank 1-a/ 2 from N(0,1)
For example, if for n=900 we had X = 4, then the 90% ClI for 6

would be 14 1,645, (%44 +1.645.[%, |~ [3.89,4.11]




Cl on the base of the MLE — Example cont.

If we wanted to approximate the probability of the
outcome = 0, we would look for g(8)=e™*

g(f)=9g(MLE()) =e
And the approximate CI for g(8), for a confidence
level 1-« ;. _

X VX % % VX«

- X - X
€ _ul—a/ZWe ,€ +u1—a/2ﬁe

where u,_, , Is @ quantile of rank 1-«/2 from N(0,1)
For example, if for n=900 we had X =4, then the 90% ClI for
g(d would be
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