Mathematical Statistics

Anna Janicka

Lecture VII, 12.04.2021

ESTIMATOR PROPERTIES, PART III
(ASYMPTOTIC PROPERTIES)

Plan for Today

- 1. Asymptotic properties of estimators
 - asymptotic unbiasedness
 - consistency
 - asymptotic normality
 - asymptotic efficiency
- 2. Consistency, asymptotic normality and asymptotic efficiency of MLE estimators

Asymptotic properties of estimators

- \square Limit theorems describing estimator properties when $n \rightarrow \infty$
- In practice: information on how the estimators behave for large samples, approximately
- □ Problem: usually, there is no answer to the question what sample is large enough (for the approximation to be valid)

Consistency

Let $X_1, X_2, ..., X_n,...$ be an IID sample (of independent random variables from the same distribution). Let $\hat{g}(X_1, X_2,..., X_n)$ be a sequence of estimators of the value $g(\theta)$.

 \hat{g} is a **consistent** estimator, if for all $\theta \in \Theta$, for any $\varepsilon > 0$:

$$\lim_{n\to\infty} P_{\theta}(|\hat{g}(X_1,X_2,...,X_n)-g(\theta)|\leq \varepsilon)=1$$

(i.e. \hat{g} converges to $g(\theta)$ in probability)

Strong consistency

Let $X_1, X_2, ..., X_n,...$ be an IID sample (of independent random variables from the same distribution). Let $\hat{g}(X_1, X_2,..., X_n)$ be a sequence of estimators of the value $g(\theta)$.

 \hat{g} is **strong consistent**, if for any $\theta \in \Theta$:

$$P_{\theta}\left(\lim_{n\to\infty}\hat{g}(X_1,X_2,...,X_n)=g(\theta)\right)=1$$

(i.e. \hat{g} converges to $g(\theta)$ almost surely)

Consistency – note

From the Glivenko-Cantelli theorem it follows that empirical CDFs converge almost surely to the theoretical CDF. Therefore, we should expect (strong) consistency from all sensible estimators.

Consistency = minimal requirement for a sensible estimator.

Consistency – how to verify?

□ From the definition: for example with the use of a version of the Chebyshev inequality:

$$P(|\hat{g}(X) - g(\theta)| \ge \varepsilon) \le \frac{E(\hat{g}(X) - g(\theta))^2}{\varepsilon^2}$$

Given that the MSE of an estimator is

$$MSE(\theta, \hat{g}) = E_{\theta}(\hat{g}(X) - g(\theta))^{2}$$

we get a sufficient condition for consistency:

$$\lim_{n\to\infty} MSE(\theta,\hat{g}) = 0$$

□ From the LLN

Consistency – examples

- \square For any family of distributions with an expected value: the sample mean \overline{X}_n is a consistent estimator of the expected value $\mu(\theta)=E_{\theta}(X_1)$. Convergence from the SLLN.
- ☐ For distributions having a variance:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 and $\hat{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ are consistent estimators of the variance $\sigma^2(\theta) = \text{Var}_{\theta}(X_1)$. Convergence from the SLLN.

Consistency – examples/properties

 \square An estimator may be unbiased but inconsistent; e.g. $T_n(X_1, X_2, ..., X_n) = X_1$ as an estimator of $\mu(\theta) = E_{\theta}(X_1)$.

☐ An estimator may be biased but consistent; e.g. the biased estimator of the variance or any unbiased consistent estimator + 1/n.

Asymptotic normality

 $\hat{g}(X_1, X_2, ..., X_n)$ is an asymptotically normal estimator of $g(\theta)$, if for any $\theta \in \Theta$ there exists $\sigma^2(\theta)$ such that, when $n \rightarrow \infty$

$$\sqrt{n}(\hat{g}(X_1, X_2, \dots, X_n) - g(\theta)) \xrightarrow{D} \mathcal{N}(0, \sigma^2(\theta))$$

Convergence in distribution, i.e. for any a

$$\lim_{n\to\infty} P_{\theta}\left(\frac{\sqrt{n}}{\sigma(\theta)}(\hat{g}(X_1,X_2,...,X_n)-g(\theta))\leq a\right) = \Phi(a)$$

 $\lim_{n\to\infty} P_{\theta}\left(\frac{\sqrt{n}}{\sigma(\theta)}(\hat{g}(X_1,X_2,...,X_n)-g(\theta))\leq a\right)=\Phi(a)$ in other words, the distribution of $\hat{g}(X_1,X_2,...,X_n)$ is for large n similar to $N(g(\theta),\frac{\sigma^2}{n})$

Asymptotic normality – properties

- An asymptotically normal estimator is consistent (not necessarily strongly).
- \square A *similar* condition to unbiasedness the expected value of the asymptotic distribution equals $g(\theta)$ (but the estimator *does not need to* be unbiased).
- □ **Asymptotic variance** defined as $\sigma^2(\theta)$ or $\sigma^2(\theta)$ the variance of the asymptotic distribution

Asymptotic normality – what it is not

For an asymptotically normal estimator we usually have:

$$E_{\theta}\hat{g}(X_1, X_2, ..., X_n) \xrightarrow{n \to \infty} g(\theta)$$

$$n \operatorname{var} \hat{g}(X_1, X_2, ..., X_n) \xrightarrow{n \to \infty} \sigma^2(\theta)$$

but these properties needn't hold, because convergence in distribution does not imply convergence of moments.

Asymptotic normality – example

Let X_1 , X_2 , ..., X_n ,... be an IID sample from a distribution with mean μ and variance σ^2 . On the base of the CLT, for the sample mean we have

$$\sqrt{n}(\overline{X}-\mu) \xrightarrow{D} N(0,\sigma^2)$$

In this case the asymptotic variance, $\frac{\sigma^2}{n}$, is equal to the estimator variance.

Asymptotic normality – how to prove it

In many cases, the following is useful:

Delta Method. Let T_n be a sequence of random variables such that for $n \rightarrow \infty$ we have

$$\sqrt{n}(T_n - \mu) \xrightarrow{D} N(0, \sigma^2)$$

and let $h: \mathbb{R} \to \mathbb{R}$ be a function differentiable at point μ such that $h'(\mu) \neq 0$. Then

$$\sqrt{n}(h(T_n)-h(\mu)) \xrightarrow{D} N(0,\sigma^2(h'(\mu))^2)$$

 μ , σ^2 are functions of θ

usually used when estimators are functions of statistics T_n , which can be easily shown co converge on the base of CLT

Asymptotic normality – examples cont.

In an exponential model: $MLE(\lambda) = \frac{1}{\overline{X}}$

From CLT, we get

$$\sqrt{n}(\overline{X}-\frac{1}{\lambda}) \xrightarrow{D} N(0,\frac{1}{\lambda^2})$$

so from the Delta Method for h(t)=1/t.

$$\sqrt{n}(\frac{1}{\overline{X}}-\lambda) \xrightarrow{D} N(0,\frac{1}{\lambda^2}\cdot(-\frac{1}{(1/\lambda)^2})^2)$$

so $\frac{1}{X}$ is an asymptotically normal (and consistent) estimator of λ .

Asymptotic efficiency

For an asymptotically normal estimator $\hat{g}(X_1, X_2,..., X_n)$ of $g(\theta)$ we define **asymptotic efficiency** as

as.ef
$$(\hat{g}) = \frac{(g'(\theta))^2 n}{\sigma^2(\theta) \cdot I_n(\theta)}$$
,

where $\sigma^2(\theta)/n$ is the asymptotic variance, i.e. for $n\rightarrow\infty$

$$\sqrt{n}(\hat{g}(X_1, X_2, \dots, X_n) - g(\theta)) \xrightarrow{D} \mathcal{N}(0, \sigma^2(\theta))$$

modification of the definition of efficiency wariance in place of the normal variance

as.ef
$$(\hat{g}) = \frac{(g'(\theta))^2}{\sigma^2(\theta) \cdot l_1(\theta)}$$

Relative asymptotic efficiency

Relative asymptotic efficiency for asymptotically normal estimators $\hat{g}_1(X)$ and $\hat{g}_2(X)$

as.ef
$$(\hat{g}_1, \hat{g}_2) = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)} = \frac{\text{as.ef } (\hat{g}_1)}{\text{as.ef } (\hat{g}_2)}$$

Note. A less (asymptotically) efficient estimator may have other properties, which will make it preferable to a more efficient one.

Relative asymptotic efficiency – examples. Is the mean better than the median?

Relative asymptotic efficiency – examples. Is the mean better than the median?

Depends on the distribution!

a) normal model N(μ , σ^2):

$$\sigma^2$$
 known

$$\sqrt{n}(\overline{X} - \mu) \xrightarrow{D} N(0, \sigma^2)$$

$$\sqrt{n}(\text{mêd} - \mu) \xrightarrow{D} N(0, \frac{\pi\sigma^2}{2})$$

b) Laplace model Lapl (μ, λ)

$$\lambda$$
 known

$$\sqrt{n} \left(\overline{X} - \mu \right) \xrightarrow{D} N(0, \frac{2}{\lambda^2})$$

$$\sqrt{n} \left(\text{mêd} - \mu \right) \xrightarrow{D} N(0, \frac{1}{\lambda^2})$$

as.ef(mêd,
$$\overline{X}$$
) = 2 > 1

as.ef(mêd, X) = $\frac{2}{\pi}$ < 1

some distributions do not have a mean...

Theorem: For a sample from a continuous distribution with density f(x), the sample median is an asymptotically normal estimator for the median *m* (provided the density is continuous and $\neq 0$ at point m): $\sqrt{n} (\text{mêd} - m) \xrightarrow{D} N(0, \frac{1}{4(f(m))^2})$

Consistency of ML estimators

Let $X_1, X_2, ..., X_n$... be a sample from a distribution with density $f_{\theta}(x)$. If $\Theta \subseteq \mathbb{R}$ is an open set, and:

- \blacksquare all densities f_{θ} have the same support;
- the equation $\frac{d}{d\theta} \ln L(\theta) = 0$ has exactly one solution, $\hat{\theta}$.

Then $\hat{\theta}$ is the $MLE(\theta)$ and it is consistent

Note. MLE estimators do not have to be unbiased!

Asymptotic normality of ML estimators

Let $X_1, X_2, ..., X_n$... be a sample with density $f_{\theta}(x)$, such that $\Theta \subseteq \mathbb{R}$ is open, and $\hat{\theta}$ is a consistent m.l.e. (for example, fulfills the assumptions of the previous theorem), and

- Fisher Information may be calculated, $0 < I_1(\theta) < \infty$
- the order of integration with respect to x and derivation with respect to θ may be changed

then $\hat{\theta}$ is asymptotically normal and

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N(0,\frac{1}{l_1(\theta)})$$

Asymptotic normality of ML estimators

Additionally, if $g: \mathbb{R} \to \mathbb{R}$ is a function differentiable at point θ , such that $g'(\theta) \neq 0$, and $\hat{g}(X_1, X_2, ..., X_n)$ is $MLE(g(\theta))$, then

$$\sqrt{n}(\hat{g}(X_1, X_2, \dots, X_n) - g(\theta)) \xrightarrow{D} \mathcal{N}(0, \frac{(g'(\theta))^2}{I_1(\theta)})$$

Asymptotic efficiency of ML estimators

If the assumptions of the previous theorems are fulfilled, then the ML estimator (of θ or $g(\theta)$) is asymptotically efficient.

Asymptotic normality and efficiency of ML estimators – examples

- \square In the normal model: the mean is an asymptotically efficient estimator of μ
- \square In the Laplace model: the median is an asymptotically efficient estimator of μ

Summary: basic (point) estimator properties

- □ bias
- variance
- MSE
- efficiency

- asymptotic unbiasedness
- consistency
- asymptotic normality
- asymptotic efficiency

