Mathematical Statistics 2020/2021, Homework 3 (two problems)

Name and Surname \qquad Student's number \qquad

In the problems below, please use the following: as k - the sum of digits in your student's number; as m - the sum of the two largest digits in your student's number; and as n - the smallest digit in your student's number plus 1. For example, if an index number is 609999: $k=42, m=18, n=1$.
Please write down the solutions (transformations, substitutions etc.), and additionally provide the final answer in the space specified (the answer should be a number in decimal notation, rounded to four digits).
5. Let $X_{1}, X_{2}, \ldots, X_{k}$ be a random sample from a distribution with density

$$
f_{\theta}(x)=m \theta^{m} x^{-(m+1)} \mathbf{1}_{[\theta, \infty)}(x),
$$

where $\theta>0$ is an unknown parameter.
Let $\hat{\theta}_{M L}$ be the Maximum Likelihood Estimator of θ.
a) For $\hat{\theta}_{M L}$, calculate the bias of the estimator, assuming that the true value of parameter θ is equal to $n \cdot m \cdot k$;
b) For $\hat{\theta}_{M L}$, calculate the variance of the estimator, assuming that the true value of parameter θ is equal to $n \cdot m \cdot k$.

ANSWER:
a) bias of $\hat{\theta}_{M L}$:
b) variance of $\hat{\theta}_{M L}$:

Solution:
6. Let $X_{1}, X_{2}, \ldots, X_{k}$ be a random sample from a uniform distribution over the interval $[0, m \theta]$, where $\theta>0$ is an unknown parameter, and let

$$
T=c\left(X_{1}+X_{2}+\ldots X_{k}\right)
$$

be an estimator of θ.
a) Find c such that the estimator T is unbiased.
b) Calculate the MSE of the unbiased estimator T, assuming that the true value of parameter θ is equal to $n \cdot m$.
a) value of c :
b) MSE of unbiased T :

Solution:

