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1. Estimator properties – introduction

In lecture 3, we studied the different methods of point estimation – i.e. methods of provi-
ding data-based assessments (values) of unknown values of parameters of data distributions.
Immediately, some basic questions arise: are any of these methods of estimating better than
others? In what terms can we describe the properties of the introduced estimators? Do we re-
ally estimate what we want, when we are using a particular method? Aren’t the errors we are
making too large? During this lecture and the following lectures 5 and 6, we will define basic
estimator characteristics and properties, and provide the tools to determine which methods
prove best under given sets of assumptions.

Obviously, if we want to assess the quality of an approximation, the intuitive mechanism
is to look at the error we are making, and base our judgement on this aspect. In the case of
estimators, there are two basic problems with such an approach. First, due to the fact that
the data an estimator is based on are assumed to be random variables, the errors will also
be random, and thus impossible to predict with certainty. Therefore, instead of looking at
precise values of errors, we will need to look at expected values of errors (averaged over all the
possible outcomes) for an estimator. Second, the error we will make will depend on the true
value of the parameter we wish to estimate, which we do not know. This is a drawback that
we will need to get used to – the properties will need to be described in terms of functions
(of the unknown parameter), rather than values.

2. Bias

The most basic property of an estimator is it’s bias, i.e. the difference between the (expec-
ted) value of the estimator and the value that was to be estimated.

Definition 1. The bias of an estimator θ̂(X) of the value θ is

b(θ) = Eθ(θ̂(X)− θ) = Eθθ̂(X)− θ,

and of an estimator ĝ(X) of the value g(θ) is

b(θ) = Eθ(ĝ(X)− g(θ)) = Eθĝ(X)− g(θ).

By adding the subscript θ to the expected value we want to underline the fact that the
expected value is calculated for a given value of the parameter, and what is averaged are the
possible experiment outcomes for this given value. Obviously, the most desirable case is the
one where the bias is zero:

Definition 2. An estimator is unbiased, if ∀θ ∈ Θ we have b(θ) = 0.

Example: Let us assume that X1, X2, . . . , Xn are random variables from a normal distribu-
tion N (µ, σ2). Let us first estimate the value of µ. Let us consider the following estimators:

(1) µ1 = X̄ is an unbiased estimator of µ, since

Eµ,σ(X̄) = Eµ,σ
X1 +X2 + . . .+Xn

n
=
n · µ
n

= µ;

(2) µ2 = X1 is also an unbiased estimator of µ;
(3) µ3 = 5 is a biased estimator of µ: b(µ) = Eµ,σ(5 − µ) = 5 − µ 6= 0 for all values of

µ 6= 5.

The same conclusions hold for any other distribution (i.e. non-normal) with a mean µ, for
the equivalent estimators of the mean.
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Let us now revert to the normal distribution and estimate the variance. The empirical-
distribution-based estimator of the variance, i.e.

Ŝ2 =
1

n

n∑
i=1

(Xi − X̄)2

is a biased estimator of σ2:

Eµ,σŜ2(X) = Eµ,σ
1

n

∑
(Xi−X̄)2 =

1

n
Eµ,σ

(∑
X2
i − nX̄2

)
=

1

n

(
n(µ2 + σ2)− n(µ2 +

σ2

n
)

)
= σ2−σ

2

n
6= σ2,

where we have used the property that for an IID sample from a N (µ, σ2) distribution, the

average has a known distribution: X̄ ∼ N (µ, σ
2

n
). The bias of the Ŝ2 estimator is equal

to b(σ) = −σ2

n
, which means that the estimator gives assessments of the true value of the

variance which are systematically too small (the bias is negative).
However, this biased formula for the variance may easily be transformed to provide an

unbiased estimator S2, if we divide the sum of squares of the differences from the average by
n− 1 rather than by n:

Eµ,σS2(X) = Eµ,σ
1

n− 1

∑
(Xi − X̄)2 = . . . = σ2.

The same calculations hold for any other distribution with a variance σ2: the Ŝ2 estimator
(with division by n) is biased, while the S2 estimator (with division by n−1) is unbiased. This
is why, especially if we have a small sample and are interested in a precise assessment of σ2,
we may want to use the estimator with division by n− 1. Let us note, however, that the bias
of the Ŝ2 estimator will be very small if the sample size is large; we have b(σ) = −σ2

n
−−−→
n→∞

0.

We will come back to this observation later on.

3. Mean Square Error and Variance

Although unbiasedness is a welcome property, as we have seen above, there may exist more
than one unbiased estimator. How can we therefore choose the best one from among them?
In order to be able to provide a criterion, we will go back to one of the questions asked at
the beginning of this lecture, namely to the question about the error of the estimator. Bias
may be seen as a type of error, but it is not the only possible component: we may imagine
an estimator which is not biased, but which is always far off from the value it is supposed to
estimate (i.e., the “too large” and “too small” estimates are equally common, but they are
indeed too small and too large – too often). This high dispersion is not a welcome property
(it is not comforting to know that on average our estimator is right, if we also know that in
each case we are going to be very far off from the real value). The variance is a characteristic
that describes the variability in a set of outcomes. We will introduce a similar concept:

Definition 3. Let θ̂(X) be an estimator of θ. The Mean Square Error (MSE) of the

estimator θ̂(X) is the function

MSE(θ, θ̂) = Eθ(θ̂(X)− θ)2.

If ĝ(X) is an estimator of g(θ), then the MSE of the estimator ĝ(X) is the function

MSE(θ, ĝ) = Eθ(ĝ(X)− g(θ))2.

The MSE will measure how far, on average, are the values of the estimator from the true
value of the parameter we are aiming for. Note that the choice of the type of averaged
function is arbitrary; instead of the square of the difference of the value of the estimator
from the theoretical counterpart we could have used the absolute value or a different power.
Throughout this lecture, however, we will not consider the other choices of these other so-
called score functions.
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The formula in the definition of the MSE may be rearranged; simple calculations lead to
the conclusion that we can write

MSE(θ, θ̂) = b2(θ) + Var(θ̂),

which means that the quality of an estimator can be decomposed into two factors: the varia-
bility of the estimator, and a function of the bias. For unbiased estimators, the MSE is equal
to the estimator variance.

We will want to use the MSE as a criterion of comparison of estimators; we will prefer the
estimator with smaller errors, i.e. with lower MSE. We need to be careful, however, because
the MSEs are functions of unknown parameters, which means that they may intersect. This
means that for some values of parameters one of the estimators may be better, while for some
different values – the other one. In this case, the estimators are incomparable. In order to
be able to say that one estimator is indeed (strictly) better than another one, we will need to
make sure that the MSE of the first one is always at least as low as for the second one (and
strictly lower for at least one value of the parameter).

Examples: If X1, X2, . . . , Xn are an IID sample from a distribution with mean µ and va-
riance σ2, and these two parameters are unknown, then

(1) The MSE of µ1 = X̄ – an unbiased estimator of the mean – is equal to

MSE(µ, σ, X̄) = Eµ,σ(X̄ − µ)2 = Varµ,σ(X̄) =
σ2

n
;

(2) The MSE of µ2 = X1 – an unbiased estimator of the mean – is equal to

MSE(µ, σ,X1) = Eµ,σ(X1 − µ)2 = Varµ,σ(X1) = σ2;

(3) The MSE of µ3 = 5 – a biased estimator of the mean – is equal to

MSE(µ, σ, 5) = Eµ,σ(5− µ)2 = (5− µ)2 = (b(µ))2 .

Note that the variance of the µ3 estimator, which always returns 5, is equal to 0 (no
variability).

(4) In the normal model, the MSE of S2 – the unbiased estimator of the variance – is
equal to

MSE(µ, σ, S2) = Eµ,σ(S2 − σ2)2 = Varµ,σ(S2) =
2σ4

n− 1
;

(5) In the normal model, the MSE of Ŝ2 – the biased estimator of the variance – is equal
to

MSE(µ, σ, Ŝ2) = Eµ,σ(Ŝ2 − σ2)2 = b2(σ) + Varµ,σ(Ŝ2) =
σ4

n2
+

(n− 1)2

n2

2σ4

n− 1
=

2n− 1

n2
σ4.

Therefore, we can see that in terms of the MSE, the estimator µ1 is better than the estimator
µ2 (it has a lower variance if only the available sample size is greater than 1). Unfortunately,
the intuitively worse estimator µ3 is incomparable to µ1 and µ2, because for some values of
the parameters – if it happens that the true value of µ is equal to 5 – the MSE of µ3 will
be equal to 0, and lower than in the case of the other two estimators which have non-zero
variances. This shows that the MSE criterion is not a perfect one – based on this criterion
alone, we can’t reject an estimator that is obviously “stupid”!

On the other hand, if we compare the two estimators of the variance, S2 and Ŝ2, we can see
that the biased estimator always has a lower MSE (i.e. it dominates the unbiased estimator).
What happens here is that when we introduce a change of scale which corrects the bias of the
Ŝ2 estimator, in effect we inflate the variance of the estimator. What needs to be stressed at
this point is that although the precise values of the MSEs of the two estimators depend on
the distribution (for non-normal distributions, the formulae will be different), the conclusion
that the biased estimator has a lower MSE stands regardless of the distribution (provided it
has a variance). What also needs to be underlined at this point is that the choice whether we

will use the Ŝ2 or the S2 estimator in a particular situation depends on whether the criterion
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which is more important to us is the estimator behaving better overall (having smaller MSE)
or the estimator giving us results which are on average correct (being unbiased). This may
change in different situations.

The examples above show that it may be pointless to try to compare all estimators, since
if we look at the natural criterion – the estimator error – we will always be able to provide
a “stupid” constant estimator like µ3 which will be better than all other estimators for one
particular value of the estimated parameter (while being much worse for all other values).
Therefore, it is worthwhile to constrain our quest for the best estimator to a search within
unbiased estimators only. In these cases, the estimator with lower variance will have lower
MSE.

Immediately, the question of the best possible estimator arises: is there a limit to how small
the variance may be (how good an estinmator may be)? In the next lecture, we will show
that indeed there is; for now, we will limit ourselves to introducing the following definition:

Definition 4. g∗(X) is a Minimum Variance Unbiased Estimator (MVUE), for g(θ),
if:

(1) g∗(X) is an unbiased estimator of g(θ);
(2) for any unbiased estimator ĝ(X) we have ∀θ ∈ Θ:

Varθg
∗ ≤ Varθĝ.

How can we verify whether an estimator is MVUE? In general, it is not possible to freely
minimize the variance of unbiased estimators – for many statistical models there exists a
limit of variance minimization. This limit depends on the underlying distribution and on the
sample size. We will introduce the necessary distribution properties in the next lecture. At
this point, we will just note that the condition of unbiasedness is a crucial one – as the µ3

example shows, it is not a problem to construct a biased estimator with zero variance – any
constant (i.e. an estimation rule “regardless of the data, we always say the same thing”) has
such a property.
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