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Lecture 3

1. Estimation

During the previous lecture, we signalled that the statistical model we will want to use and
the usage of particular statistics will be determined by the questions that we want to answer
on the base of the data. During this lecture, we will explore the concept of point estimation,
i.e. the problem of how to choose, based on the data, the (single) distribution from the given
family of distributions that best fits the data; in other words, how to choose the (single) best
fitting value of the unknown parameter θ from the set θ of possible parameter values. In order
to achieve this goal, we will introduce a special statistic, called the estimator :

Definition 1. An estimator of parameter θ is any statistic T = T (X1, X2, . . . , Xn) with
values in the set Θ (with X1, X2, . . . , Xn being observations for a statistical model with a
family of distributions Pθ indexed by θ ∈ Θ).

Note that in the definition of the estimator, we do not have the “intuitive” condition we
want it to fulfill, namely that it approximates the true value of θ; an estimator is any function
of the data, provided that it gives values from the possible range of values for θ. Obviously,
we will be interested in estimators which will give us values close to what we want to obtain.
We will study the different aspects of “closeness” and methods of evaluation of estimators
during the next lectures. As for now, we will not define rigorously the expected property and
rely on the intuitive understanding of approximating a value with a given formula, to explore
the different possible approaches to estimation.

The commonly used notation for an estimator is to add a “ ˆ ” to the estimated value,
for example θ̂ (if we wanted to estimate the value of parameter θ) or ĝ(θ) (if we wanted to
estimate not the value of θ itself, but rather a function of it – for example, we could estimate
σ2, rather than σ, in the normal model).

1.1. Frequency as an estimator. In some cases, the unknown parameter of the distribution
is strictly related to the frequency of particular data outcomes. For example, this is the case
in the quality control problem we introduced during the previous lecture, where we had: an
observation of X, the total number of defective elements in a batch of n = 50 elements, with
X = {0, 1, . . . , n} and

Pθ(X = x) =
(
n

x

)
θx(1− θ)n−x

for θ ∈ [0, 1] (we had observed X = 6). In this model, the parameter θ corresponds to the
probability that a given element will be defective.

An obvious choice for the estimator of the unknown value of θ is, in this case, the empirical
frequency. Here, we would have θ̂ = X

n
, and the value of the estimated parameter, based on

the observed data, would be equal to 6
50 = 0.12. Note that if, rather than observing a single

value of the number of defective elements, we were to observe sequences of 0s and 1s for the
whole sample, the parameter θ could also be estimated as the empirical frequency (in this
case, this would be equivalent to the average of the observed values of 0s and 1s).

Unfortunately, the choice of the best estimator is seldom as obvious. The quality control
example is very simple, but it suffices to add one more (i.e., a third) possible value of the
experiment outcome, and the problem gets a lot more complicated. Imagine that we are mo-
deling the prevalence of various genotypes in a population. Assume that there are two possible
versions of an allele, leading to three possible genotypes. If by θ we denote the unknown pro-
bability of a dominating allele, then the theoretical frequencies of the three genotypes would
be equal to θ2 (two times the dominating allele), 2θ(1− θ) (once the dominating version, and
once the recessive version) and (1 − θ)2 (for twice the recessive version of the allele). Now,
assume that in a field experiment we observe N1, N2, N3 individuals of the three genotypes,
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respectively. What function should we use as an estimator of θ? If we were to use the frequency
of the first genotype only, we would take θ̂1 =

√
N1
n

. However, we could also estimate θ on

the base of the frequency of the third genotype, as θ̂2 = 1−
√

N3
n

. Furthermore, we could also

look at θ̂3 = N1
n

+ 2N2
n

, and other formulae, all based on frequencies. Which of these formulas
should we use? The answer is far from obvious (and we only looked at estimators based on
frequency!).

1.2. The empirical CDF as an estimator. During the probability calculus course, we have
shown (on the base of the laws of large numbers and the CLT) that the empirical cumulative
distribution function constructed for a sample is a good approximation of the true CDF of
the distribution (provided that we have sample sizes large enough). Therefore, the empirical
CDF may also prove useful in the estimation procedure. Indeed, if we define the empirical
CDF for the sample X1, X2, . . . , Xn as

F̂n(t) =
1
n

n∑
i=1

1(−∞,t](Xi),

then, for a given value of t, this empirical CDF is a statistic, with a distribution given by the
formula:

P
(
F̂n(t) =

k

n

)
=
(
n

k

)
(F (t))k(1− F (t))n−k,

for k = 0, . . . , n. We may calculate the characteristics of this empirical distribution:
• The expected value of the statistic at point t is equal to E(F̂n(t)) = F (t) (note that we

are almost dealing with a binomial distribution with parameters n and p = F (t), the
only difference being that instead of having the values of the random variable equal
to 0, 1, . . . , n we have values divided by n, namely 0, 1

n
, 2
n
, . . . , 1, so the expected value

is the same as in the case of the binomial distribution, divided by n);
• The variance of the statistic at point t is equal to VarF̂n(t) = 1

n
F (t)(1 − F (t)) (the

variance for a binomial distribution would be nF (t)(1− F (t)), and we need to divide
the random variable by n so the variance is divided by n2);
• Given the above properties, from the CLT we have that

F̂n(t)− F (t)√
F (t)(1− F (t))

√
n→n→∞ N (0, 1),

and what is more, from the Glivenko-Cantelli theorem we have that the convergence
of the empirical distribution to the theoretical counterpart is uniform.

Therefore, it follows that we can use the the empirical CDF as an estimator of the theoretical
CDF. This will be useful especially in cases where the family of probability distributions in
a statistical model will have a parametrization with F , rather than a “simple” parameter θ,
but not only then.

1.3. The order statistics as estimators. Another class of statistics, which may be used as
estimators, are the order statistics. We define the i-th order statistic for a sampleX1, X2, . . . , Xn

as the i-th element of the sample when organized in ascending order. In particular, X1:n is
the minimum value from the sample, and Xn:n is the maximum value. For a sample of size n
from a distribution with CDF equal to F , we have that the CDF of the i-th order statistic is
equal to

Fi:n(t) = P(Xi:n ¬ t) =
n∑
k=i

(
n

k

)
(F (t))k(1− F (t))n−k,

and if additionally the original distribution is continuous with density f , then the i-th order
statistic is also a continuous random variable, with density equal to

fi:n(x) = n

(
n− 1
i− 1

)
f(x)(F (x))i−1(1− F (x))n−i.
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1.4. Two basic types of estimation. From the above considerations, it follows that the
empirical characteristics calculated on the base of the sample are going to be “good” estimators
of their theoretical counterparts: the sample mean will be a good estimator of the expected
value; the sample variance will be a good estimator of the theoretical variance; the sample
median will be a good estimator of the theoretical median, and so on. These properties of
the samples are the rationale underlying the two most basic methods of point estimation: the
method of moments and the method of quantiles.

1.4.1. Method of Moments Estimation. First, we will look at a technique of estimation
called the method of moments, which is based on comparisons of empirical moments with
their theoretical counterparts. From the limit theorems, we know that for large samples they
should be more or less equal; therefore, we will be using sample characteristics as estimators
of theoretical values, which depend on unknown parameter distributions, and from that we
will derive the approximated values of the parameters. If we have a k-dimensional space for
the unknown probability distribution parameter θ, in the method of moments technique we
will need to solve a system of k equations, such that:

• If Θ is single-dimensional, we will use one equation, usually EθX = X̄;
• If Θ is two-dimensional, we will use a system of two equations, usually EθX = X̄,

VarθX = Ŝ2; etc.
We will illustrate with two simple examples.

(1) Let X1, X2, . . . , Xn be a sample from an exponential distribution Exp(λ) with an
unknown parameter λ > 0. We know that EλX = 1

λ
, so that we will write the single

equation as
1
λ

= X̄,

and solving for λ, we get

λ̂MM =
1
X̄
.

(2) Let X1, X2, . . . , Xn be a sample from a gamma distribution Gamma(α, λ) with unk-
nown parameters α, λ > 0. We have a two-dimensional parameter space, so we will
use two equations, one for the mean and one for the variance. We know that Eα,λ = α

λ
and Varα,λ = α

λ2
, so we will have

α

λ
= X̄,

α

λ2
= Ŝ2,

which gives

λ̂MM =
X̄

Ŝ2
, α̂MM =

X̄2

Ŝ2
.

1.4.2. Method of Quantiles Estimation. The method of quantiles is identical to the me-
thod of moments, apart from the fact that instead of moments, theoretical and empirical
quantiles are compared (depending on the distribution, this may be easier computationally
than calculations with moments).

For the exponential model, we would calculate the estimator for the parameter λ from the
equation for the median:

1− e−λMed =
1
2
,

from which it follows that

λ̂MQ =
ln 2
Med

.

The method of moments and the method of quantiles are simple conceptually and (usually)
computationally, but in some cases they lead to estimators which do not have some desired
properties (for example, they may not behave well for small sample sizes). The third estimation
technique we will introduce usually does not have these drawbacks.
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1.5. Maximum Likelihood Estimation. A totally different way of reasoning underlies the
third estimation technique we will talk about, namely: the maximum likelihood estimation.
This method is based on the assumption that the value of the parameter which best fits the
data, given the data, is the value of the parameter for which the probability of obtaining the
given set of results is the highest (among all possible values of the parameter). Therefore, we
will define the likelihood, as a function of the unknown parameter θ, equal to the probability
(density) function of the data, treating the sample observations as given:

L(θ) = f(θ;X1, X2, . . . , Xn).

In order to find the value of θ which best fits the data – the maximum likelihood estimator
of θ – we will need to maximize the likelihood function L. In other words, θ̂MLE will be the
maximum likelihood estimator of θ, if

f(θ̂MLE(x1, x2, . . . , xn);x1, x2, . . . , xn) = sup
θ∈Θ

f(θ;x1, x2, . . . , xn).

If we want to provide the ML estimator of a function of the parameter θ, i.e. g(θ), by
convention we will provide g(θ̂MLE).

In most practical applications, we will be looking for a ML estimator for a sample of inde-
pendent observations. In this case, the likelihood function is a product of probability functions,
and finding a maximum with the usual technique of taking the derivative and equaling it to
zero may lead to horrible formulas. Therefore, in most cases we will take advantage of the
property that a function reaches its maximum at the same point that a monotonous transfor-
mation of it – namely, the logarithm – reaches the maximum, and maximize the logarithm of
the likelihood function, denoted by l(θ), instead of maximizing L(θ).

Examples:
(1) Quality control example. The class of probability distributions is given by

Pθ(X = x) =
(
n

x

)
θx(1− θ)n−x,

so the likelihood function is equal to

L(θ) =
(
n

x

)
θx(1− θ)n−x.

Instead of maximizing the likelihood, it will be easier to maximize the logarithm

l(θ) = ln
(
n

x

)
+ x ln θ + (n− x) ln(1− θ),

which we will do by taking the derivative of l(θ) with respect to θ and equaling it to
zero:

l′(θ) =
x

θ
− n− x

1− θ
= 0,

which leads to
θ̂ML =

x

n
.

In this case, the maximum likelihood estimator is the same as the frequency estimator
(and the method od moments, based on the average, estimator).

(2) Now let X1, X2, . . . , Xn be, again, a random sample from an exponential distribution
Exp(λ) with an unknown parameter λ > 0. The likelihood function is then equal to

L(λ) =
n∏
i=1

λe−λxi = λne−λ·
∑n

i=1 xi .

Again, instead of maximizing the likelihood function with respect to λ, it will be much
easier to maximize the logarithm of the likelihood function:

l(λ) = n lnλ− λ ·
n∑
i=1

xi,
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so we will take the derivative of l(λ) with respect to λ and equal it to zero:

l′(λ) =
n

λ
−

n∑
i=1

xi = 0,

which gives

λ̂ML =
n∑n
i=1 xi

=
1
X̄
.

In this case, the maximum likelihood estimator of λ is the same as the method of
moments estimator (but different from the method of quantiles estimator).

(3) Finally, let us look at a random sample of X1, X2, . . . , Xn from a normal model, i.e.
such that Xi ∼ N(µ, σ2), where µ and σ > 0 are both unknown parameters. In this
case, the likelihood function is equal to

L(µ, σ) =
n∏
i=1

1√
2πσ

e−(xi−µ)2/2σ2 =
1(√

2πσ
)n e−∑n

i=1(xi−µ)2/2σ2 ,

so this time it is a function of two parameters. Again, we will maximize the log likeli-
hood,

l(µ, σ) = −n ln(
√

2πσ)−
n∑
i=1

(xi − µ)2

2σ2
.

This time, the maximization procedure requires calculating two first-order conditions:
dl

dσ
= −n

σ
+

1
σ3
·
n∑
i=1

(xi − µ)2 = 0,

dl

dµ
=

1
σ2

n∑
i=1

xi −
nµ

σ2
= 0.

Solving for µ and σ, we get
µ̂ML = X̄

from the second equation, and substituting into the first equation, we obtain:

σ̂ML =

√√√√ 1
n

n∑
i=1

(xi − X̄)2.

Note that these estimators are the same as those we would obtain with the method
of moments technique, i.e. when comparing the sample average with the theoretical
average and the sample variance with the theoretical variance.

Since usually we are not interested in the value of σ itself but in the variance, in
such cases we would specify the maximum likelihood estimator of σ2 as the square of
the formula for σ, namely

σ̂2
ML =

1
n

n∑
i=1

(xi − X̄)2.

Note that in the specification of the maximum likelihood method, it is not necessary that the
observations are independent. If the condition of independence did not hold, we would need
to specify the specific joint distribution, which would not be a product of one-dimensional
marginal distributions anymore. Afterwards, the whole procedure would be performed as
before.
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