### Mathematical Statistics

### Anna Janicka

Lecture VI, 29.03.2021

**PROPERTIES OF ESTIMATORS, PART II** 

#### **Plan for Today**

- 1. Fisher information
- 2. Information inequality
- 3. Estimator efficiency
- 4. Asymptotic estimator properties
  - consistency
  - asymptotic normality
    - asymptotic efficiency



#### **Comparing estimators – reminder**

 $\hat{g}_1(X)$  is **better** than (dominates)  $\hat{g}_2(X)$ , if  $\forall \theta \in \Theta \qquad MSE(\theta, \hat{g}_1) \leq MSE(\theta, \hat{g}_2)$ and  $\exists \theta \in \Theta \qquad MSE(\theta, \hat{g}_1) < MSE(\theta, \hat{g}_2)$ 

an estimator will be better than a different estimator only if its plot of the MSE never lies above the MSE plot of the other estimator; if the plots intersect, estimators are **incomparable** 



#### **Comparing estimators – cont.**

A lot of estimators are incomparable  $\rightarrow$ comparing any old thing is pointless; we need to constrain the class of estimators

If we compare two unbiased estimators, the one with the smaller variance will be better



#### Minimum-variance unbiased estimator

We constrain comparisons to the class of unbiased estimators. In this class, one can usually find the best estimator:

# $g^*(X)$ is a minimum-variance unbiased estimator (MVUE) for $g(\theta)$ , if

- **g**\*(X) is an unbiased estimator of  $g(\theta)$ ,
- for any unbiased estimator  $\hat{g}(X)$  we have  $Var_{\theta}g^{*}(X) \leq Var_{\theta}\hat{g}(X)$  for  $\theta \in \Theta$



## How can we check if the estimator has a minimum variance?

In general, it is not possible to freely minimize the variance of unbiased estimators – for many statistical models there exists a limit of variance minimization. It depends on the distribution and on the sample size.



If a statistical model with obs.  $X_1$ ,  $X_2$ , ...,  $X_n$  and probability  $f_{\theta}$  fulfills regularity conditions, i.e.:

- **1.**  $\Theta$  is an open 1-dimensional set.
- 2. The support of the distribution {x:  $f_{\theta}(x) > 0$ } does not depend on  $\theta$ .
- **3**. The derivative  $\frac{df_{\theta}}{d\theta}$  exists.

we can define **Fisher information** (Information) for sample  $X_1, X_2, ..., X_n$ :  $I_n(\theta) = E_{\theta} \left( \frac{d}{d\theta} \ln f_{\theta}(X_1, X_2, ..., X_n) \right)^2$ 



Warsaw University Faculty of Economic Science we do not assume independence of  $X_1, X_2, ..., X_n$ 

#### Fisher information – what does it mean?

- □ It is a measure of how much a sample of size *n* can tell us about the value of the unknown parameter  $\theta$  (on average).
- If the density around θ is flat, then information from a single observation or a small sample will not allow to differentiate among possible values of θ. If the density around θ is steep, the sample contributes a lot of info leading to θ identification.



#### **Fisher Information – cont.**

#### Some formulae:

□ if the distribution is continuous

$$I_n(\theta) = \int_{\mathcal{X}} \left(\frac{\frac{df_{\theta}(x)}{d\theta}}{f_{\theta}(x)}\right)^2 f_{\theta}(x) dx$$

- □ if the distribution is discrete  $I_n(\theta) = \sum_{x \in \mathcal{X}} \left(\frac{\frac{dP_{\theta}(x)}{d\theta}}{P_{\theta}(x)}\right)^2 P_{\theta}(x)$
- $\Box \text{ if } f_{\theta} \text{ is twice differentiable}$  $I_{n}(\theta) = -E_{\theta} \Big( \frac{d^{2}}{d\theta^{2}} \ln f_{\theta}(X_{1}, X_{2}, ..., X_{n}) \Big)$



#### Fisher information – cont. (2)

If the sample consists of independent random variables from the same distribution, then

$$I_n(\theta) = nI_1(\theta)$$

where  $I_1(\theta)$  is Fisher information for a single observation



#### **Fisher Information – examples**

 $\Box$  Exponential distribution exp( $\lambda$ )

$$I_1(\lambda) = \dots = \frac{1}{\lambda^2}$$

 $\Box$  Poisson distribution Poiss( $\theta$ )

$$I_1(\theta) = \dots = \frac{1}{\theta}$$



Warsaw University Faculty of Economic Sciences

#### Information Inequality (Cramér-Rao)

Let  $X=(X_1, X_2, ..., X_n)$  be observations from a joint distribution with density  $f_{\theta}(x)$ , where  $\theta \in \Theta \subseteq \mathbb{R}$ . If:

- T(X) is a statistic with a finite expected value, and  $E_{\theta}T(X)=g(\theta)$
- Fisher information is well defined,  $I_n(\theta) \in (0,\infty)$
- All densities  $f_{\theta}$  have the same support
- The order of differentiating  $(d/d\theta)$  and integrating  $\int \dots dx$  may be reversed.

Then, for any 
$$\theta$$
:  
 $\operatorname{Var}_{\theta} T(X) \ge \frac{(g'(\theta))^2}{I_n(\theta)}$ 



#### Information inequality – implications

- The MSE of an unbiased estimator (= the variance) cannot be lower than a given function of *n* and *θ*.
- If the MSE of an estimator is equal to the lower bound of the information inequality, then the estimator is MVUE.
- $\Box$  If  $\hat{\theta}(X)$  is an unbiased estimator of  $\theta$ , then

$$\operatorname{Var}_{\theta}\hat{\theta}(X) \ge \frac{1}{I_n(\theta)}$$



#### Information inequality – examples

- $\Box$  In the Poisson model,  $\hat{\theta} = \overline{X}$  is MVUE( $\theta$ )
- □ In the exponential model, X is MVUE(1/ $\lambda$ )

 $Var_{\lambda}(\overline{X}) = \frac{1}{n\lambda^2}$ 

 $Var_{\theta}(X) = \frac{\theta}{\rho}$ 

□ The Cramér-Rao inequality is not always optimal. In the exponential model,  $\hat{\lambda} = 1/X$  is a biased estimator of  $\lambda$ .  $\hat{\lambda} = \frac{n-1}{2}$ 

$$\widetilde{\lambda} = \frac{n-1}{n\overline{X}}$$

is an unbiased estimator, which is also MVUE( $\lambda$ ), although its variance is *higher* than the bound in the Cramér-Rao inequality.



#### Efficiency

# **The efficiency** of an unbiased estimator $\hat{g}(X)$ of $g(\theta)$ is: $ef(\hat{g}) = \frac{(g'(\theta))^2}{Var_{\theta}(\hat{g}) \cdot I_{\theta}(\theta)}$

## Relative efficiency of unbiased estimators $\hat{g}_1(X)$ and $\hat{g}_2(X)$ : $\operatorname{ef}(\hat{g}_1, \hat{g}_2) = \frac{\operatorname{Var}_{\theta}(\hat{g}_2)}{\operatorname{Var}_{\theta}(\hat{g}_1)} = \frac{\operatorname{ef}(\hat{g}_1)}{\operatorname{ef}(\hat{g}_2)}$



Warsaw University Faculty of Economic Sciences

#### Efficiency and the information inequality

□ If the information inequality holds, then for any unbiased estimator  $ef(\hat{g}) \le 1$ 

- □ If  $\hat{g} = MVUE(g)$ , then it is possible that ef( $\hat{g}$ ) = 1, but it is also possible that ef( $\hat{g}$ ) < 1
- □ If  $ef(\hat{g}) = 1$ , then the estimator is efficient.



WARSAW UNIVERSITY Faculty of Economic Sciences Cramér-Rao efficiency

#### **Efficiency – examples**

- $\Box$  In the Poisson model,  $\hat{\theta} = \overline{X}$  is efficient.
- In the exponential model,  $\overline{X}$  is an efficient estimator of  $1/\lambda$ .

 $\Box \text{ In the exponential model, } \hat{\lambda} = \frac{n-1}{n\overline{X}}$ 

is not an efficient estimator of  $\lambda$ , although it is MVUE( $\lambda$ ).

□ In a uniform model  $U(0, \theta)$ , for the MLE( $\theta$ ) we get ef >1 (that is because the assumptions of the information inequality are not fulfilled)



#### Asymptotic poperties of estimators

- □ Limit theorems describing estimator properties when  $n \rightarrow \infty$
- In practice: information on how the estimators behave for large samples, approximately
- Problem: usually, there is no answer to the question what sample is large enough (for the approximation to be valid)



#### Consistency

Let  $X_1, X_2, ..., X_n, ...$  be an IID sample (of independent random variables from the same distribution). Let  $\hat{g}(X_1, X_2, ..., X_n)$  be a sequence of estimators of the value  $g(\theta)$ .  $\hat{g}$  is a **consistent** estimator, if for all  $\theta \in \Theta$ , for any  $\varepsilon > 0$ :

 $\lim_{n\to\infty} P_{\theta}(|\hat{g}(X_1, X_2, ..., X_n) - g(\theta)| \le \varepsilon) = 1$ 

(i.e.  $\hat{g}$  converges to  $g(\theta)$  in probability)



Let  $X_1, X_2, ..., X_n, ...$  be an IID sample (of independent random variables from the same distribution). Let  $\hat{g}(X_1, X_2, \dots, X_n)$  be a sequence of estimators of the value  $g(\theta)$ .  $\hat{g}$  is strong consistent, if for any  $\theta \in \Theta$ :  $P_{\theta}\left(\lim_{n \to \infty} \hat{g}(X_1, X_2, \dots, X_n) = g(\theta)\right) = 1$ 

(i.e.  $\hat{g}$  converges to  $g(\theta)$  almost surely)



#### **Consistency – note**

From the Glivenko-Cantelli theorem it follows that empirical CDFs converge almost surely to the theoretical CDF. Therefore, we should expect (strong) consistency from all sensible estimators.

Consistency = minimal requirement for a sensible estimator.



#### **Consistency – how to verify?**

From the definition: for example with the use of a version of the Chebyshev inequality:  $P(|\hat{g}(X) - g(\theta)| \ge \varepsilon) \le \frac{E(\hat{g}(X) - g(\theta))^2}{\varepsilon^2}$ Given that the MSE of an estimator is  $MSE(\theta, \hat{g}) = E_{\theta}(\hat{g}(X) - g(\theta))^2$ we get a sufficient condition for consistency:  $\lim MSE(\theta, \hat{g}) = 0$  $n \rightarrow \infty$ From the LLN



For any family of distributions with an expected value: the sample mean  $X_n$  is a consistent estimator of the expected value  $\mu(\theta) = E_{\theta}(X_1)$ . Convergence from the SLLN. □ For distributions having a variance:  $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$  and  $\hat{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ are consistent estimators of the variance  $\sigma^2(\theta) = \operatorname{Var}_{\theta}(X_1)$ . Convergence from the SLLN.



#### **Consistency – examples/properties**

□ An estimator may be unbiased but unconsistent; eg.  $T_n(X_1, X_2, ..., X_n) = X_1$  as an estimator of  $\mu(\theta) = E_{\theta}(X_1)$ .

An estimator may be biased but consistent; eg. the biased estimator of the variance or any unbiased consistent estimator + 1/n.



