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PROPERTIES OF ESTIMATORS, PART II



Plan for Today

1. Fisher information

2. Information inequality

3. Estimator efficiency

4. Asymptotic estimator properties

◼ consistency

◼ asymptotic normality

◼ asymptotic efficiency



Comparing estimators – reminder

is better than (dominates)         , if

and 

an estimator will be better than a different estimator only if 

its plot of the MSE never lies above the MSE plot of the 

other estimator; if the plots intersect, estimators are  

incomparable
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Comparing estimators – cont. 

A lot of estimators are incomparable →

comparing any old thing is pointless; we 

need to constrain the class of estimators

If we compare two unbiased estimators, 

the one with the smaller variance will be 

better



Minimum-variance unbiased estimator

We constrain comparisons to the class of 

unbiased estimators. In this class, one can 

usually find the best estimator:

g*(X) is a minimum-variance unbiased 

estimator (MVUE) for g(), if

◼ g*(X) is an unbiased estimator of g(),

◼ for any unbiased estimator           we have

for 
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How can we check if the estimator has a 

minimum variance? 

 In general, it is not possible to freely 

minimize the variance of unbiased 

estimators – for many statistical models 

there exists a limit of variance 

minimization. It depends on the 

distribution and on the sample size.



Fisher information

If a statistical model with obs. X1, X2, ..., Xn and 

probability f fulfills regularity conditions, i.e.:

1.  is an open 1-dimensional set.

2. The support of the distribution {x: f(x)>0} does 

not depend on .

3. The derivative      exists.

we can define Fisher information 

(Information) for sample X1, X2, ..., Xn:

we do not  assume independence of X1, X2, ..., Xn 
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Fisher information – what does it mean?

 It is a measure of how much a sample of 

size n can tell us about the value of the 

unknown parameter  (on average).

 If the density around  is flat, then 

information from a single observation or a 

small sample will not allow to differentiate 

among possible values of . If the density 

around  is steep, the sample contributes 

a lot of info leading to  identification.



Fisher Information – cont. 

Some formulae:

 if the distribution is continuous

 if the distribution is discrete

 if f is twice differentiable
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Fisher information – cont. (2)

 If the sample consists of independent 

random variables from the same 

distribution, then

where I1( ) is Fisher information for a single 

observation
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Fisher Information – examples

 Exponential distribution exp()

 Poisson distribution Poiss( )
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Information Inequality (Cramér-Rao)

Let X=(X1, X2, ..., Xn) be observations from a joint  

distribution with density f (x), where   R. If:

◼ T(X) is a statistic with a finite expected value, and              

E T(X)=g( )

◼ Fisher information is well defined, In( ) (0,)

◼ All densities f have the same support

◼ The order of differentiating (d/d) and integrating .... dx 

may be reversed.
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Information inequality – implications

 The MSE of an unbiased estimator        

(= the variance) cannot be lower than a 

given function of n and .

 If the MSE of an estimator is equal to the 

lower bound of the information inequality, 

then the estimator is MVUE.

 If         is an unbiased estimator of , then )(ˆ X
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Information inequality – examples

 In the Poisson model,            is MVUE()

 In the exponential model,      is MVUE(1/ )

 The Cramér-Rao inequality is not always optimal. 

In the exponential model,                 is a biased 

estimator of . 

is an unbiased estimator, which is also MVUE(), 

although its variance is higher than the bound in 

the Cramér-Rao inequality.
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Efficiency

The efficiency of an unbiased estimator 

of g( ) is:

Relative efficiency of unbiased estimators              

and            :
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Efficiency and the information inequality

 If the information inequality holds, then 

for any unbiased estimator

 If      = MVUE(g), then it is possible that 

, but it is also possible that                

 If               , then the estimator is 

efficient.

Cramér-Rao efficiency
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Efficiency – examples

 In the Poisson model,           is efficient.

 In the exponential model,     is an efficient 

estimator of 1/.

 In the exponential model,

is not an efficient estimator of , although it is 

MVUE().

 In a uniform model U(0, ), for the MLE() 

we get ef >1 (that is because the assumptions 

of the information inequality are not fulfilled)

X=̂

X

Xn

n 1ˆ −
=



Asymptotic poperties of estimators

 Limit theorems describing estimator 

properties when n→

 In practice: information on how the 

estimators behave for large samples, 

approximately

 Problem: usually, there is no answer to the 

question what sample is large enough (for 

the approximation to be valid)



Consistency

Let X1, X2, ..., Xn ,... be an IID sample (of 

independent random variables from the same 

distribution) . Let be a 

sequence of estimators of the value g( ).       

is a consistent estimator, if for all , 

for any  >0:

(i.e.      converges to g( ) in probability)
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Strong consistency

Let X1, X2, ..., Xn ,... be an IID sample (of 

independent random variables from the same 

distribution). Let be a 

sequence of estimators of the value g( ).        

is strong consistent, if for any :

(i.e.     converges to g( ) almost surely)
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Consistency – note

From the Glivenko-Cantelli theorem it 

follows that empirical CDFs converge 

almost surely to the theoretical CDF. 

Therefore, we should expect (strong) 

consistency from all sensible estimators.

Consistency = minimal requirement for a 

sensible estimator.



Consistency – how to verify?

 From the definition: for example with the use 

of a version of the Chebyshev inequality:

Given that the MSE of an estimator is 

we get a sufficient condition for consistency:

 From the LLN
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Consistency – examples

 For any family of distributions with an 

expected value: the sample mean      is a 

consistent estimator of the expected value   

 ( )=E (X1). Convergence from the SLLN.

 For distributions having a variance:                 

and 

are consistent estimators of the variance

 2( )=Var (X1). Convergence from the 

SLLN.
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Consistency – examples/properties

 An estimator may be unbiased but 

unconsistent; eg. Tn(X1, X2, ..., Xn )=X1 as 

an estimator of  ( )=E (X1).

 An estimator may be biased but 

consistent; eg. the biased estimator of 

the variance or any unbiased consistent 

estimator + 1/n.




