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PROPERTIES OF ESTIMATORS, PART I



Plan for today

1. Maximum likelihood estimation examples –

cont.

2. Basic estimator properties:

◼ estimator bias

◼ unbiased estimators

3. Measures of quality: comparing estimators

◼ mean square error

◼ incomparable estimators

◼ minimum-variance unbiased estimator



MLE – Example 1.

 Quality control, cont. We maximize

or equivalently maximize

i.e. solve

solution:
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MLE – Example 3.

 Normal model: X1, X2, ..., Xn are a sample 

from N(, 2). ,  unknown. 

we solve

we get: 
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Estimator properties

 Aren’t the errors too large? Do we 

estimate what we want?

 is supposed to approximate .

In general: is to approximate g( ).

 What do we want? Small error. But:

◼ errors are random variables (data are RV)

→ we can only control the expected value

◼ the error depends on the unknown .

→ we can’t do anything about it...
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Estimator bias

If           is an estimator of  :

bias of the estimator is equal to

If          is an estimator of g( ):

bias of the estimator is equal to

/          is unbiased, if

other notations, e.g.:
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The normal model: reminder

Normal model: X1, X2, ..., Xn are a sample 

from distribution N(, 2). ,  unknown.

Theorem. In the normal model,      and S2

are independent random variables, such 

that

In particular: 
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Estimator bias – Example 1

In a normal model:







X=̂

11ˆ X=

5ˆ2 =



Estimator bias – Example 1

In a normal model:

 is an unbiased estimator of :

 is an unbiased estimator of :

 is biased:

bias:

X=̂
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Estimator bias – Example 1

In a normal model:

 is an unbiased estimator of :

 is an unbiased estimator of :

 is biased:

bias:

X=̂
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any model with unknown mean :



Estimator bias – Example 1 cont. 

 is a biased

estimator of 2:

 is an unbiased

estimator of 2 :
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Estimator bias – Example 1 cont. 

 is a biased

estimator of 2:

 is an unbiased

estimator of 2 :
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Estimator bias – Example 1 cont. (2)

Bias of estimator

is equal to

for n → , bias tends to 0, so this estimator 

is also OK for large samples
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Asymptotic unbiased estimator

 An estimator          of g( ) is 

asymptotically unbiased, if
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How to compare estimators?

 We want to minimize the error of the 

estimator; the estimator which makes 

smaller mistakes is better.

 The error may be either + or -, so usually 

we look at the square of the error (the 

mean difference between the estimator 

and the estimated value)



Mean Square Error

If          is an estimator of  :

Mean Square Error of estimator          is 

the function

If           is an estimator of g( ):

MSE of estimator          is the function

We will only consider the MSE. Other measures are 

also possible (eg with absolute value)
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Properties of the MSE

We have:

For unbiased estimators, the MSE is equal 

to the variance of the estimator
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MSE – Example 1

X1, X2, ..., Xn are a sample from a distribution 

with mean , and variance 2. ,  unknown.

 MSE of            (unbiased):

 MSE of              (unbiased):

 MSE of             (biased):
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MSE – Example 2

Normal model

 MSE of
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MSE – Example 2

Normal model

 MSE of
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MSE and bias – Example 2.

Poisson Model: X1, X2, ..., Xn are a sample 

from a Poisson distribution with unknown 

parameter .

XML == ...̂

0)( =b

n
XXXMSE

n

i in


  ===  =1

1VarVar),(



Comparing estimators

is better than (dominates)         , if

and 

an estimator will be better than a different estimator only if 

its plot of the MSE never lies above the MSE plot of the 

other estimator; if the plots intersect, estimators are  

incomparable
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MSE – Example 1 again

X1, X2, ..., Xn are a sample from a distribution 

with mean , and variance 2. ,  unknown.

 (unbiased)

 (unbiased)

 (biased)

 S2 (biased)

 (unbiased)

X=̂

11ˆ X=

5ˆ2 =
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Comparing estimators – Example 1 cont.

We have

 From among

is better (for n>1)

 are incomparable, 

just like 

 From among 

is better

11ˆ and ˆ XX == 
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Comparing estimators – cont. 

A lot of estimators are incomparable →

comparing any old thing is pointless; we 

need to constrain the class of estimators

If we compare two unbiased estimators, 

the one with the smaller variance will be 

better



Minimum-variance unbiased estimator

We constrain comparisons to the class of 

unbiased estimators. In this class, one can 

usually find the best estimator:

g*(X) is a minimum-variance unbiased 

estimator (MVUE) for g(), if

◼ g*(X) is an unbiased estimator of g(),

◼ for any unbiased estimator           we have

for 
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How can we check if the estimator has a 

minimum variance? 

 In general, it is not possible to freely 

minimize the variance of unbiased 

estimators – for many statistical models 

there exists a limit of variance 

minimization. It depends on the 

distribution and on the sample size.




