Mathematical Statistics

Anna Janicka

Lecture V, 22.03.2021

PROPERTIES OF ESTIMATORS, PART I

Plan for today

- Maximum likelihood estimation examples cont.
- 2. Basic estimator properties:
 - estimator bias
 - unbiased estimators
- 3. Measures of quality: comparing estimators
 - mean square error
 - incomparable estimators
 - minimum-variance unbiased estimator

MLE – Example 1.

Quality control, cont. We maximize $L(\theta) = P_{\theta}(X = x) = {n \choose x} \theta^{x} (1-\theta)^{n-x}$ or equivalently maximize

$$I(\theta) = \ln\binom{n}{x} + \ln(\theta^x) + \ln((1-\theta)^{n-x}) = \ln\binom{n}{x} + x\ln(\theta) + (n-x)\ln(1-\theta)$$

 $MLE(\theta) = \hat{\theta}_{ML} = \frac{x}{r}$

i.e. solve
$$l'(\theta) = \frac{x}{\theta} - \frac{n-x}{1-\theta} = 0$$

solution:

MLE – Example 3.

 $\Box \text{ Normal model: } X_1, X_2, \dots, X_n \text{ are a sample}$ from N(μ, σ^2). μ, σ unknown. $l(\mu, \sigma) = \ln\left(\left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum((x_i - \mu)^2)\right)\right)$ $= -\frac{n}{2}\ln(2\pi) - n\ln\sigma - \frac{1}{2\sigma^2}\left(\sum x_i^2 - 2\mu\sum x_i + n\mu^2\right)$

we solve

we get: $\hat{\mu}_{ML} = \overline{X}, \quad \hat{\sigma}_{ML}^2 = \frac{1}{n} \sum (X_i - \overline{X})^2$

Aren't the errors too large? Do we estimate what we want?

 $\Box \hat{\theta} \text{ is supposed to approximate } \theta.$ In general: $\hat{g}(X)$ is to approximate $g(\theta)$.

□ What do we want? Small error. But:

- errors are random variables (data are RV)
- \rightarrow we can only control the expected value
- the error depends on the unknown θ .

 \rightarrow we can't do anything about it...

Estimator bias

If $\hat{\theta}(X)$ is an estimator of θ : bias of the estimator is equal to $b(\theta) = E_{\theta}(\hat{\theta}(X) - \theta) = E_{\theta}\hat{\theta}(X) - \theta$ If $\hat{g}(X)$ is an estimator of $g(\theta)$: **bias** of the estimator is equal to $b(\theta) = E_{\theta}(\hat{g}(X) - g(\theta)) = E_{\theta}\hat{g}(X) - g(\theta)$ $\hat{\theta}(X)/\hat{g}(X)$ is **unbiased**, if $b(\theta) = 0$ for $\forall \theta \in \Theta$

A 🛞

WARSAW UNIVERSITY Faculty of Economic Science other notations, e.g.:

Normal model: $X_1, X_2, ..., X_n$ are a sample from distribution N(μ, σ^2). μ, σ unknown. Theorem. In the normal model, \overline{X} and S^2 are independent random variables, such that $\overline{X} \sim N(\mu, \sigma^2/n)$ $\frac{n-1}{-2}S^2 \sim \chi^2(n-1)$

In particular:

$$E_{\mu,\sigma}\overline{X} = \mu$$
, and $\operatorname{Var}_{\mu,\sigma}\overline{X} = \frac{\sigma^2}{n}$
 $E_{\mu,\sigma}S^2 = \sigma^2$, and $\operatorname{Var}_{\mu,\sigma}S^2 = \frac{2\sigma^4}{n}$

Estimator bias – Example 1

In a normal model:

$$\square \quad \hat{\mu} = X$$

$$\square \hat{\mu}_1 = X_1$$

 $\square \quad \hat{\mu}_2 = 5$

In a normal model: \square $\hat{\mu} = X$ is an unbiased estimator of μ : $E_{\mu,\sigma}\hat{\mu}(X) = E_{\mu,\sigma}\overline{X} = E_{\mu,\sigma}\frac{1}{n}\sum_{i=1}^{n}X_{i} = \frac{1}{n}n\mu = \mu$ \square $\hat{\mu}_1 = X_1$ is an unbiased estimator of μ : $E_{\mu,\sigma}\hat{\mu}_1(X) = E_{\mu,\sigma}X_1 = \mu$ \square $\hat{\mu}_2 = 5$ is biased: $E_{\mu,\sigma}\hat{\mu}_2(X) = E_{\mu,\sigma}5 = 5 \neq \mu$ eg for $\mu = 2$ bias:

 $b(\mu) = 5 - \mu$

any model with unknown mean μ : In a normal model: \square $\hat{\mu} = X$ is an unbiased estimator of μ : $E_{\mu,\sigma}\hat{\mu}(X) = E_{\mu,\sigma}\overline{X} = E_{\mu,\sigma}\frac{1}{n}\sum_{i=1}^{n}X_{i} = \frac{1}{n}n\mu = \mu$ \square $\hat{\mu}_1 = X_1$ is an unbiased estimator of μ : $E_{\mu,\sigma}\hat{\mu}_1(X) = E_{\mu,\sigma}X_1 = \mu$ \square $\hat{\mu}_2 = 5$ is biased: $E_{\mu,\sigma}\hat{\mu}_2(X) = E_{\mu,\sigma}5 = 5 \neq \mu$ eg for $\mu = 2$ bias:

 $b(\mu) = 5 - \mu$

Estimator bias – Example 1 cont.

$$\square \hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ is a biased}$$

estimator of σ^2 :

$$E_{\mu,\sigma}\hat{S}^{2}(X) = E_{\mu,\sigma}\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2} = \frac{1}{n}E_{\mu,\sigma}\left(\sum X_{i}^{2}-n\overline{X}^{2}\right)$$
$$= \frac{1}{n}\left(n(\mu^{2}+\sigma^{2})-n(\mu^{2}+\sigma^{2}/n)\right) = \sigma^{2}-\sigma^{2}/n \neq \sigma^{2}$$

$$\Box S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \text{ is an unbiased}$$

estimator of σ^{2} :

 $E_{\mu,\sigma}S^{2}(X) = E_{\mu,\sigma}\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2} = \frac{1}{n-1}E_{\mu,\sigma}(\sum X_{i}^{2}-n\overline{X}^{2})$ $= \frac{1}{n-1}\left(n(\mu^{2}+\sigma^{2})-n(\mu^{2}+\sigma^{2}/n)\right) = \frac{1}{n-1}\left(\sigma^{2}(n-1)\right) = \sigma^{2}$

Warsaw University Faculty of Economic Sciences

Estimator bias – Example 1 cont.

$$\square \hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ is a biased}$$

estimator of σ^2 :

$$E_{\mu,\sigma}\hat{S}^{2}(X) = E_{\mu,\sigma}\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2} = \frac{1}{n}E_{\mu,\sigma}\left(\sum X_{i}^{2}-n\overline{X}^{2}\right)$$
$$= \frac{1}{n}\left(n(\mu^{2}+\sigma^{2})-n(\mu^{2}+\sigma^{2}/n)\right) = \sigma^{2}-\sigma^{2}/n \neq \sigma^{2}$$

$$\square S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \text{ is an unbiased}$$

estimator of σ^{2} :

 $E_{\mu,\sigma}S^{2}(X) = E_{\mu,\sigma}\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2} = \frac{1}{n-1}E_{\mu,\sigma}(\sum X_{i}^{2}-n\overline{X}^{2})$ $= \frac{1}{n-1}(n(\mu^{2}+\sigma^{2})-n(\mu^{2}+\sigma^{2}/n)) = \frac{1}{n-1}(\sigma^{2}(n-1)) = \sigma^{2}$

Warsaw University Faculty of Economic Science not necessarily the normal model!

Estimator bias – Example 1 cont. (2)

Bias of estimator $\hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ is equal to $b(\sigma) = -\frac{\sigma^2}{n}$

for $n \to \infty$, bias tends to 0, so this estimator is also OK for large samples

WARSAW UNIVERSITY Faculty of Economic Sciences for any distribution with a variance

Asymptotic unbiased estimator

□ An estimator $\hat{g}(X)$ of $g(\theta)$ is **asymptotically unbiased**, if

$$\forall \theta \in \Theta : \quad \lim_{n \to \infty} b(\theta) = 0$$

We want to minimize the error of the estimator; the estimator which makes smaller mistakes is *better*.

The error may be either + or -, so usually we look at the square of the error (the mean difference between the estimator and the estimated value)

If $\hat{\theta}(X)$ is an estimator of θ :

Mean Square Error of estimator $\hat{\theta}(X)$ is the function

$$MSE(\theta, \hat{\theta}) = E_{\theta}(\hat{\theta}(X) - \theta)^2$$

If $\hat{g}(X)$ is an estimator of $g(\theta)$: **MSE** of estimator $\hat{g}(X)$ is the function $MSE(\theta, \hat{g}) = E_{\theta}(\hat{g}(X) - g(\theta))^2$

We will only consider the MSE. Other measures are also possible (eg with absolute value)

Properties of the MSE

We have:

 $MSE(\theta, \hat{g}) = b^2(\theta) + Var(\hat{g})$

For unbiased estimators, the MSE is equal to the variance of the estimator

 $X_1, X_2, ..., X_n$ are a sample from a distribution with mean μ , and variance σ^2 . μ , σ unknown. \square MSE of $\hat{\mu} = X$ (unbiased): $MSE(\mu,\sigma,\overline{X}) = E_{\mu,\sigma}(\overline{X}-\mu)^2 = Var_{\mu,\sigma}\overline{X} = \frac{\sigma^2}{2}$ \square MSE of $\hat{\mu}_1 = X_1$ (unbiased): $MSE(\mu,\sigma,X_1) = E_{\mu,\sigma}(X_1 - \mu)^2 = Var_{\mu,\sigma}X_1 = \sigma^2$ \square MSE of $\hat{\mu}_2 = 5$ (biased):

 $MSE(\mu, \sigma, 5) = E_{\mu, \sigma}(5 - \mu)^2 = (5 - \mu)^2$

MSE – Example 2 Normal model

$$\Box \text{ MSE of } S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$MSE(\mu, \sigma, S^{2}) = E_{\mu,\sigma} (S^{2} - \sigma^{2})^{2} = Var_{\mu,\sigma} S^{2} = \frac{2\sigma^{4}}{n-1}$$

$$\Box \text{ MSE of } \hat{S}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$MSE(\mu, \sigma, \hat{S}^{2}) = E_{\mu,\sigma} (\hat{S}^{2} - \sigma^{2})^{2} = b^{2}(\sigma) + Var_{\mu,\sigma} \hat{S}^{2}$$

$$= \frac{\sigma^{4}}{n^{2}} + \frac{(n-1)^{2}}{n^{2}} \frac{2\sigma^{4}}{n-1} = \frac{2n-1}{n^{2}} \sigma^{4}$$

Warsaw University Faculty of Economic Sciences

 $MSE(\mu,\sigma,S^2) > MSE(\mu,\sigma,\hat{S}^2)$

MSE – Example 2 Normal model

$$\square \text{ MSE of } S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$MSE(\mu, \sigma, S^2) = E_{\mu,\sigma} (S^2 - \sigma^2)^2 = Var_{\mu,\sigma} S^2 \left(\frac{2\sigma^4}{n-1}\right)$$

$$\square \text{ MSE of } \hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$MSE(\mu, \sigma, \hat{S}^2) = E_{\mu,\sigma} (\hat{S}^2 - \sigma^2)^2 = b^2(\sigma) + Var_{\mu,\sigma} \hat{S}^2$$

$$= \frac{\sigma^4}{n^2} + \frac{(p-1)^2}{n^2} \frac{2\sigma^4}{n-1} = \frac{2n-1}{n^2} \sigma^4$$
in any model: similarly, just
$$MSE(\mu, \sigma, S^2) > MSE(\mu, \sigma, \hat{S}^2)$$

 $MSE(\mu,\sigma,S^2) > MSE(\mu,\sigma,S^2)$

MSE and bias – Example 2.

Poisson Model: $X_1, X_2, ..., X_n$ are a sample from a Poisson distribution with unknown parameter θ .

$$\hat{\theta}_{ML} = \dots = \overline{X}$$
$$b(\theta) = 0$$
$$MSE(\theta, \overline{X}) = Var_{\theta} \overline{X} = Var_{\theta} \frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{\theta}{n}$$

Comparing estimators

 $\hat{g}_1(X)$ is **better** than (dominates) $\hat{g}_2(X)$, if $\forall \theta \in \Theta \qquad MSE(\theta, \hat{g}_1) \leq MSE(\theta, \hat{g}_2)$ and $\exists \theta \in \Theta \qquad MSE(\theta, \hat{g}_1) < MSE(\theta, \hat{g}_2)$

an estimator will be better than a different estimator only if its plot of the MSE never lies above the MSE plot of the other estimator; if the plots intersect, estimators are **incomparable**

 $X_1, X_2, ..., X_n$ are a sample from a distribution with mean μ , and variance σ^2 . μ , σ unknown.

- $\square \hat{\mu} = X$ (unbiased)
- $\square \hat{\mu}_1 = X_1$ (unbiased)
- \square $\hat{\mu}_2 = 5$ (biased)

 $\Box S^2 \text{ (biased)} \\ \widehat{S}^2 \text{ (unbiased)}$

Comparing estimators – Example 1 cont.

We have

□ From among µ̂ = X̄ and µ̂₁ = X₁
µ̂ is better (for *n*>1)
µ̂ = X̄ and µ̂₂ = 5 are incomparable, just like µ̂₁ = X₁ and µ̂₂ = 5
□ From among S² and Ŝ²
Ŝ² is better

Comparing estimators – cont.

A lot of estimators are incomparable → comparing any old thing is pointless; we need to constrain the class of estimators

If we compare two unbiased estimators, the one with the smaller variance will be better

Minimum-variance unbiased estimator

We constrain comparisons to the class of unbiased estimators. In this class, one can usually find the best estimator:

$g^*(X)$ is a minimum-variance unbiased estimator (MVUE) for $g(\theta)$, if

- **g***(X) is an unbiased estimator of $g(\theta)$,
- for any unbiased estimator $\hat{g}(X)$ we have $Var_{\theta}g^{*}(X) \leq Var_{\theta}\hat{g}(X)$ for $\theta \in \Theta$

How can we check if the estimator has a minimum variance?

In general, it is not possible to freely minimize the variance of unbiased estimators – for many statistical models there exists a limit of variance minimization. It depends on the distribution and on the sample size.

