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1. Descriptive Statistics

By the term descriptive statistics we will mean the tools used for quantitative description of
the properties of a sample (a given set of information or data, coming from a larger population).
These tools are purely arithmetical (do not use methods based on the theory of probability),
and they are aimed at summarizing or visualizing the properties of the data. The preferred
tools and measures depend on the characteristics of the variables that are to be described,
and will vary from case to case.

Variables studied with the use of statistical tools may be divided into two main groups:
measurable and categorical. The latter group consists of variables which take on values from
a limited set of values, representing categories (such as eye color, level of education, sex etc.).
The first group consists of variables which take on meaningful, numerical values (that can
be measured – such as height, weight etc.).1 Measurable variables can be further decomposed
into continuous (when the value may be a number from a range of real numbers if measured
with infinite precision – for example velocity) and count variables (when the possible values
are discrete). Typical cases of count variables are the number of children or students enrolled
in a class. Some variables which at first sight resemble continuous random variables are also
categorical – for example, wages can be measured only up to 1 currency unit, and not with
infinite precision. Such variables, called quasi-continuous variables, are treated as continuous
in all practical applications .

1.1. Visualizing the data. We will start our presentation of descriptive statistical tools
with count variables, to which one can apply basically all tools. Assume that we look at the
grades from a “Mathematical Statistics” course, and that these were equal to:

2, 4, 3, 3, 3.5, 2, 4.5, 3, 5, 2.

One would need to spend some time in order to be able to say something general about the
grades for this course, and we only have 10 students. It would help a little bit if we arranged
the numbers in order:

2, 2, 2, 3, 3, 3, 3.5, 4, 4.5, 5.

But even now, in case of larger data sets it is evident: just enumerating the values will not be
enough to determine at first glance whether, say, it is hard or easy to pass this course. What
we can do to better comprehend the properties of the variable under study is to group it. In
the case of count variables (and also in the case of categorical variables), the easiest way of
grouping is grouping by precise value of the variable. In the case of student grades, we have
6 intuitive groups, corresponding to the following possible outcomes: 2, 3, 3.5, 4, 4.5 and 5.
Therefore, we could summarize the course outcome with the use of the following table:

grade Number of students Frequency
2 3 30%
3 3 30%
3.5 1 10%
4 1 10%
4.5 1 10%
5 1 10%

1Numbers are also possible descriptions of the classes of categorical variables; for example, one could
describe the possible outcomes of a coin toss – heads or tails – as outcome 1 and outcome 2, respectively. In
this case, however, the values assigned to the two categories are not meaningful and could be changed without
loss of our understanding of the phenomenon.
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The properties of the data under study become more apparent now: we see that approxima-
tely 30% students fail, and that another 30% of students obtain the lowest possible passing
grade. We could also visualize the proportions of the particular outcomes graphically. The
most commonly used graphs in such cases are the bar chart (with counts – such as the graph
with red bars below – or frequencies – such as the graph with blue bars below) and pie chart.
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Note that we could have also grouped the data differently, for example as
outcome Number of students Frequency
fail 3 30%
pass 7 70%

if, say, we were only interested in the failure rate for the course. Note also that this latter
representation is also a grouping for the following series of categorical data:

fail, fail, fail, pass, pass, pass, pass, pass, pass, pass.
In the case of categorical data, we can also visualize it graphically by means of bar charts (for
numbers or frequencies) and pie charts:
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Let us now look at a different example – a continuous variable. Let us assume that we ana-
lyze the surface area of 100 apartments available for sale in a given vicinity (in square meters):

32.45, 33.21, 34.36, 35.78, 37.79, 38.54, 38.91, 38.96, 39.5, 39.67, 39.8, 41.45, 41.55, 42.27, 42.4,
42.45, 44.25, 44.5, 44.7, 44.83, 44.9, 45.1, 45.9, 46.52, 47.65, 48.1, 48.55, 48.9, 49, 49.24, 49.55,
49.65, 49.7, 49.9, 50.9, 51.4, 51.5, 51.65, 51.7, 51.8, 51.98, 52, 52.1, 52.3, 53.65, 53.89, 53.9, 54,
54.1, 55.2, 55.3, 55.56, 55.62, 56, 56.7, 56.8, 56.9, 56.95, 57.13, 57.45, 57.7, 57.9, 58, 58.5, 58.67,
58.8, 59.23, 63.4, 63.7, 64.2, 64.3, 64.6, 65, 66.29, 66.78, 67.8, 68.9, 69, 69.5, 73.2, 76.8, 77.1,
77.8, 78.9, 79.5, 82.7, 83.4, 84.5, 84.9, 85, 86, 89.1, 89.6, 93, 96.7, 98.78, 103, 107.9, 112.7, 118.9.

This time, a sensible “visual” analysis of the raw series is impossible to conduct. Construc-
ting a simple frequency table for single values would not lead to better understanding of the
phenomenon, as there are no repeated values in the series. In this case, in order to better
see the properties, we need to group the series into class intervals. The choice of intervals for
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grouping is often not an easy one. First of all, it is optimal if the intervals are meaningful: if
the government subsidizes the acquisition of apartments not exceeding 75 square meters, it
would be preferable that the value of 75 be a bound to an interval, etc. Second, it is better
if the interval ranges are of similar length (say, 10m2 each). Third, in some cases it is better
(for computational reasons) if the frequencies in the particular classes are balanced (i.e. we
should avoid groupings such that one class has 95 elements and the other has 5 elements,
etc.). We should also avoid groupings which are too detailed or not detailed enough. And, last
but not least, both for computational ease and visual clarity, it is preferable that the classes
have “neat” values.

In the case of our apartment size example, it seems reasonable to group the series into
intervals of width equal to 10, starting from 30. In this case, all intervals have the same length
and all have “neat” centers (or class marks).

Interval Class mark Number Frequency Cumulative Cumulative
of apartments number frequency

c̄i ni fi cni cfi
(30,40] 35 11 0,11 11 0,11
(40,50] 45 23 0,23 34 0,34
(50,60] 55 33 0,33 67 0,67
(60,70] 65 12 0,12 79 0,79
(70,80] 75 6 0,06 85 0,85
(80,90] 85 8 0,08 93 0,93
(90,100] 95 3 0,03 96 0,96
(100,110] 105 2 0,02 98 0,98
(110,120] 115 2 0,02 100 1

Total 100 1

Based on the grouping, we can now visualize the data with the use of a histogram (the
difference between a histogram and the bar chart lies in the horizontal axis – the bars are
adjacent to each other, unlike in the previous case, where the categories were separate). One
can construct both a histogram of numbers (counts), and frequencies.
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Note that in case of continuous variables it is preferable to use histograms instead of simple
bar charts, and pie charts are usually not a good choice (unless we categorize the variable).
One can also visualize the distribution by means of a cumulative frequency histogram or the
empirical CDF.

1.2. Characteristics of the data. In case of categorical variables, there is not much more
that we can do in terms of descriptive statistics to visualize the data. In case of measura-
ble variables, we have a whole array of arithmetical tools that can be used to describe the
properties of the data set. One must be cautious with interpretations, however, because so-
metimes calculating characteristics for measurable variables which are not continuous might
be misleading. For example, although class grades may be treated as a measurable variable,
the adopted levels are somewhat arbitrary (for example, a grade of 2.5 does not appear in the
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standard scale between 2 and 3, while 3.5 appears between 3 and 4). Therefore, although we
will be able to do the arithmetics and calculate numerical characteristics for such variables,
we should always make sure that the interpretations we make based on such characteristics
are justified.

There are two basic distinctions for the characteristics describing the studied variable. The
first differentiation is based on the feature of the distribution that we want to describe –
whether it is the overall magnitude (how large, on average, are the values of the variable),
the variability, the asymmetry etc. The second distinction is based on the values that we will
be using for description – whether we will be using different moments of the distribution (in
which case we will be talking about classical measures) or measures of position (such as the
minimum, maximum, median etc.).

1.2.1. Measures of central tendency. Measures of central tendency are those which tell us
where – on average – is the “middle” of the distribution located. The basic measures are: the
arithmetic mean (the average, a classical measure) or the median and the mode (positional
measures). Other measures of position (not necessarily talking about the “middle” of the
distribution) include other quantiles (such as quartiles, deciles, percentiles etc.).

If X1, X2, . . . , Xn are the sample values of the variable under study (for example, the raw
data for the surface areas of apartments), then the arithmetic mean can be calculated as

X̄ =
1
n

n∑
i=1

Xi.

The average value of the surface area of apartments, for the data presented above, would
be equal to

X̄ =
1

100
(32.45 + 33.21 + 34.36 + · · ·+ 112.7 + 118.9) = 59.58.

If we are dealing with grouped data (for example, like in the case of student grades above),
we can simplify the calculations from the above formula by avoiding summing identical values
and using multiplication instead:

X̄ =
1
n

k∑
i=1

Xini,

where k is the number of groups into which we have divided our data, Xi are the values in
the groups, and ni are the counts of these groups.

In our example of student grades, we could calculate the average as

X̄ =
1
10

(3 · 2 + 3 · 3 + 1 · 3.5 + 1 · 4 + 1 · 4.5 + 1 · 5) = 3.2.

In both of these examples, the arithmetic mean was calculated precisely. In some cases,
however, we may face a situation where we do not have exact data at our disposal, but only
some approximations – as is the case if we are provided with data aggregated into class
intervals. In such situations, we will not be able to calculate the true value of the mean, but
we will be able to calculate an approximation of the average. This is achieved by treating all
observations from a given class as being equal to the middle of the class interval (the so-called
class mark, see the headers in the table above), and applying the formula for grouped data,
i.e.

X̄ ∼=
1
n

k∑
i=1

c̄i · ni.

In the apartment surface area example, the approximation of the mean, calculated based
on class interval data, would be equal to

X̄ ∼=
1

100
(35 · 11 + 45 · 23 + 55 · 33 + 65 · 12 + 75 · 6 + 85 · 8 + 95 · 3 + 105 · 2 + 115 · 2) = 58.7.
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This result is different than the exact amount, which was equal to 59.58. Obviously, the
narrower the class intervals used for grouping the data, the less information is lost and the
more accurate is the approximation. If raw data are available, they should always be used for
calculating characteristics in order to avoid precision losses.

The mean is a good measure to approximate the center of the distribution governing the
data, provided that the distribution has an expected value (and, as we know from probability
calculus, not all distributions do). Also, if there are outliers (very high or very low values,
or erroneous observations) in the data, the average will be affected by these observations. A
measure of central tendency which does not have these flaws is the median, or the middle
observation: (any) number such that at least half of the observations are less than or equal
to it and at least half of the observations are greater than or equal to it.

In order to calculate the median (as well as any other measure based on rank), we will need
to rearrange our observations in ascending order. We will adopt the following notation: Xi:n
will be the i-th smallest value of the n element sample (the i-th order statistic). In this
notation, X1:n is the smallest value (minimum) in the sample, and Xn:n is the largest value
in the sample (maximum). As for the median, the calculations will depend on whether the
sample size is odd or even. If it is odd, then there exists a single “middle” observation; if it is
even, there exist two observations “in the middle”, and we will take an average of these two
as the median value. Therefore,

Med =

Xn+12 :n if n is odd,
1
2

(
Xn
2 :n

+Xn
2+1:n

)
if n is even.

Going back to our examples, we can see that:
• In the case of surface apartment area raw data, we have n = 100 which is even, so the

median will be the average of the 50th and 51st observations:

Med =
1
2

(55.2 + 55.3) = 55.25.

• In the case of grades (grouped data), we need to find the class with the fifth and sixth
observations; in our case, it is going to be the class of the 3 grade; therefore, the

Med =
1
2

(3 + 3) = 3.

In the case of grouped class interval data, the situation becomes more complicated. We will
not be able to provide a specific value, but only the range into which the median should fall
into (this is the interval where the cumulative frequency reaches 0.5 for the first time). If we
are interested in a single value, rather than an interval, we will provide an approximation.
In order to derive the formula, please note the following. If we know how many observations
there are in the sample in the classes before the class of the median, we will know how much
“additional” observations from the median class we should take in order to reach the middle
observation. Then, knowing how many observations are actually in the median class, and
assuming observations are uniformly spaced in the class they fall into, we should have that
the median value is proportionally as far in the class interval as the ratio of the number of
observations we need to reach it to the number of observations we have in the class. Therefore,
we will use the following approximation:

Med ∼= cL + b ·
n
2 −

∑M−1
i=1 ni
nM

,

where M is the number of the class interval of the median, cL is the lower bound of the class
interval of the median, b is the length of the class interval of the median and ni is the number
of observations in the i-th class interval.

In our surface area example, we would have the following: the class in which the 0.5 threshold
is reached, is the 3rd class, ie. the (50,60] class. This is going to be the class interval of the
median (i.e., M = 3). The lower bound of this class is 50, so cL = 50. In the classes before the
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third class, we have 11 + 23 = 34 observations, so we need the 1002 − 34 = 16-th observation
from the 3rd class (this is going to be our median). Since the length of the class is b = 10,
and there are nM = 33 observations overall in this class, the median can be approximated as:

Med ∼= 50 + 10 · 50− 34
33

≈ 54.85.

Please note that this number, again, differs from the true value of 55.25, which means that
the approximate formula should be used only in cases where raw data is not available.

In some cases, we may be interested in describing “the middle” of the distribution with the
most frequent observation in the sample. This is not always possible – there are distributions
which do not have the property of a single most frequent value (for example, if the histogram
has several “peaks”). Therefore, the most frequent value – called the mode – is usually
only calculated if the data come from a distribution with a “standard” shape, i.e. when the
histogram has a single local maximum. The mode is then equal to this single maximum (the
most frequent observation in the sample). In the student grades example, there are two equally
frequent groups. We would not define a mode in this case.

Please note that for continuous variables, it is not possible to calculate the sample mode
unless we group the data – because for continuous distributions, we will not see two obse-
rvations which are equal to each other, and thus each observation has the same frequency.
But in such cases, it is possible to approximate the mode if we group the data first. If we are
interested in calculating the mode, we should make sure that the intervals (at least in the
“middle” of the distribution) have equal lengths (otherwise, the results of the calculations wo-
uld be biased – please note that wider intervals will naturally have more observations). Once
we have intervals of equal length, we can calculate the mode using the following formula:

Mo ∼= cL + b · nMo − nMo−1
(nMo − nMo−1) + (nMo − nMo+1)

,

where, similarly to the formula for the median, we take cL, the lower bound of the class of the
mode, and add to it the appropriate fraction of the length of the class of the mode (b). In this
case, the appropriate fraction is calculated as the ratio of the difference between the counts of
the class of the mode (nMo) and the class adjacent to the left (with a count of nMo−1), to the
sum of the differences between the count of the class of the mode and the classes adjacent to
the left and to the right (which has a count equal to nMo+1). This means that if the classes
adjacent to the mode are equally less frequent than the class of the mode, we should take
the midpoint of the interval as the approximation of the mode. If the distribution is shifted
to the left, i.e. smaller observations are more frequent, then the mode should not be in the
middle of the interval but more to the left; if the distribution is shifted to the right, i.e. larger
observations are more frequent, then the mode should be shifted to the right.

In the case of our surface area example, all class intervals have equal length (b = 10), so we
can calculate the mode. The class with the largest amount of observations is the third class,
so we have cL = 50, nMo = n3 = 33, nMo−1 = n2 = 23, nMo+1 = n4 = 12, and

Mo ∼= 50 + 10 · 33− 23
(33− 23) + (33− 12)

≈ 53.23.

1.2.2. Other measures of “location”. Additional characteristics, which may be calculated in
order to show where the values of the distribution (not necessarily the center of the distribu-
tion) are located, include quantiles other than the median. For example, if we calculate the
first and the third quartiles (i.e., values such that they divide the sample into subsam-
ples counting at least 14 and 34 observations), we will know in what range the “middle” 50%
observations are to be found. In order to calculate the quartiles, we will use the same method
as for calculating the median; the only difference is that we will be looking for observations
which are ranked not (approximately) 12n out of n, but (approximately) n4 and 34n out of n.

In particular, in cases where raw data are available, the quartiles will be calculated using
the general formula for quantiles of rank p, applied to p = 1

4 and p = 3
4 . This general formula

states that
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Qp =

Xbnpc+1:n if np 6∈ Z
1
2 (Xnp:n +Xnp+1:n) if np ∈ Z.

For our apartment surface area example, n4 and 34n are integer values, so we would take the
average of observations numbered 25 and 26 as Q1, and the average of observations ranked
75 and 76 as Q3, i.e.

Q1 =
47.65 + 48.1

2
≈ 47.88, and Q3 =

66.78 + 67.8
2

≈ 67.29.

For grouped class interval data, we will use the same mechanism of determining the appro-
ximate value from the appropriate interval that we used for the median, albeit with adjusted
counts, i.e.:

Q1 ∼= cL + b ·
n
4 −

∑M−1
i=1 ni
nM

,

and

Q3 ∼= cL + b ·
3
4n−

∑M−1
i=1 ni
nM

,

where the values of M , cL, b and ni are defined analogously as in the case of the median (but
for the first and third quartiles, respectively).

For example, if we wanted to calculate the first and third quartiles of the distribution
of apartment surface areas, we would search for the observations for which the cumulated
frequency reaches 0.25 and 0.75, respectively; we would therefore have that the first quartile
is located in the interval (40, 50], while the third quartile is located in the interval (60, 70],
and we would have:

Q1 ∼= 40 + 10 · 25− 11
23

≈ 46.09,

and

Q3 ∼= 60 + 10 · 75− 67
12

≈ 66.67.

The two values calculated on the base of grouped data are, again, only approximations of
the true values (calculated above).

1.2.3. Measures of variability. Once we know where the values of the variable under study are
located (more or less), we may wish to determine whether they are concentrated around the
center of the distribution, or dispersed. In order to do so, we will use measures of variability.
These, too, can be calculated based on moments of the empirical distribution, or on order
statistics.

We will start with the latter group. The most simple measure of the variability of a random
variable is the range, i.e. the difference between the smallest and the largest values observed
in the data. In case of grouped class interval data, we take the difference between the lower
bound of the lowest interval, and the upper bound of the highest interval. This measure,
although simple, has many drawbacks; the most important one is that it is very susceptible
to outliers (atypical observations). Therefore, in many cases, instead of this range, we look at
the spread between the first and the third quartiles:

IQR = Q3 −Q1
i.e. the interquartile range (also called midspread or middle fifty). This measure is much
more robust, as it covers the middle 50% observations only. Based on this measure – which
depends on the scale of the variable under study – we can calculate coefficients of variation:

VQ =
Q

Med
, VQ1Q3 =

IQR

Q3 +Q1
7



(where Q = IQR/2 is the quartile deviation). These coefficients allow us to compare
dispersion of different variables.

Examples: In our student grade example, calculating the range does not tell us much – it
is equal to 5− 2 = 3 and actually does not depend on the distribution of the grades (i.e., on
whether the subject is easy or hard to pass). In the surface area example, the range, calculated
for raw data is equal to 118.9− 32.45 = 86.45, while for grouped class interval data it is equal
to 120− 30 = 90, and is obviously always biased upwards (the wider the intervals, the more
so).

On the other hand, if we calculate the interquartile range, it is equal to 66.67−46.09 = 20.58.
This value is telling, in that it shows that the middle 50% observations are quite concentrated,
i.e. half of the the surface areas of apartments are relatively close to the median value.

Turning to the classical measures of dispersion, we will start with the variance, which, for
raw data, is calculated as

Ŝ2 =
1
n

n∑
i=1

(Xi − X̄)2 =
1
n

n∑
i=1

X2i − (X̄)2,

for grouped data as

Ŝ2 =
1
n

k∑
i=1

ni(Xi − X̄)2 =
1
n

k∑
i=1

niX
2
i − (X̄)2,

and for grouped class interval data is approximated as:

Ŝ2 ∼=
1
n

k∑
i=1

ni(c̄i − X̄)2 =
1
n

k∑
i=1

nic̄
2
i − (X̄)2.

The last formula gives unbiased results if the variable is distributed uniformly – i.e., we expect
that the observations classified in intervals are distributed symmetrically around the centers
of these intervals. If this assumption is not true – as it is, for example, if the data come
from a normal distribution, where values further from the center of the distribution are less
common, and we therefore expect values in intervals to be located more to the side – the
approximate formula for the variance is going to systematically overestimate the variability
in the data. In case of the normal distributions, the following formula for a correction (the so
called Sheppard’s correction) has been proposed:

S̄2 = Ŝ2 − 1
12n

k∑
i=1

ni(ci − ci−1)2,

where cis denote the bounds of the class intervals. If all the intervals are of equal length, the
value of the correction reduces to c

2

12 , where c is the length of the interval.
Now, if we calculated the variance for the surface area example based on raw data and

using the value of the mean also calculated for raw data (i.e. 59.58), we would find that the
variance is equal to 333.85. If, on the other hand, we were to use the approximate formula
for grouped class interval data, and assuming that the mean was also calculated based on
grouped data (and equal to 58.7, approximately), we would have that the approximation of
the variance is equal to

Ŝ2 ∼=
1

100
·
(
(35− 58.7)2 · 11 + (45− 58.7)2 · 23 + (55− 58.7)2 · 33 + (65− 58.7)2 · 12

+(75− 58.7)2 · 6 + (85− 58.7)2 · 8− (95− 58.7)2 · 3 + (105− 58.7)2 · 2 + (115− 58.7)2 · 2
)

≈ 331.31

Please note that this approximation is already smaller than the true value of the variance,
and therefore subtracting the Sheppard’s correction (equal to 10

2

12 ) would just introduce addi-
tional error. This is because although the distribution of surface areas is not uniform, it isn’t
normal, either; also, the sample size may be too small (the errors resulting from small sample
size may be larger than the errors arising from class grouping) to use the correction.
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Please also note that the variance is a measure expressed in squares of the units of the
variable under study. If we wished to have a measure of variability expressed in the same
units, we would take the square root of the variance and calculate the standard deviation:

Ŝ =
√
Ŝ2, or S̄ =

√
S̄2.

In the surface area example, we would have

Ŝ = 18.27

Now, if we were interested in comparing the dispersion of different variables for the same
population, or the same variable for different populations, we would need a measure of varia-
bility which would be invariant to scaling (and units) of the variables. We can construct such
a measure, called the coefficient of variation, by taking the ratio of the standard deviation
and the mean of the variable under study:

VS =
Ŝ

X̄
.

1.2.4. Measures of asymmetry. Another class of characteristics, which may be used to deter-
mine the shape of the distribution, are those related to the (a)symmetry of the distribution,
describing whether the observations are symmetric around the center, or skewed in one direc-
tion or the other. The three canonical types of asymmetry (for unimodal distributions) are
presented in the graphs below:

Typical order: X̄ < Med < Mo X̄ =Med =Mo X̄ > Med > Mo
Negative (left) asymmetry Symmetry Positive (right) asymmetry

For symmetric distributions, the mean and the median are equal, and are also equal to the
mode. If the mean of the distribution is smaller than the median (and the mode), then the
distribution is said to be left-skewed (there is negative asymmetry). Typically, the tail of such
a distribution is longer on the left hand side. If the mean of the distribution is larger than
the median (and the mode), then the distribution is said to be right-skewed (there is positive
asymmetry). Typically, the tail of such a distribution is longer on the right hand side.

Just like in the case of the other data characteristics, we may have different measures to
describe the phenomenon of asymmetry. First of all, the shape of the distribution is captured
by the sign of the third central moment (M3) of the distribution. This measure depends on
the scale, however, and therefore is not used frequently. Instead, a standardized version is
used to measure skewness (A):

A =
M3

Ŝ3
.

Two alternative versions of a skewness coefficient are also used:
9



A1 =
X̄ −Med
Ŝ

and A1 =
X̄ −Mo
Ŝ
.

These coefficients make use of the typical order of the mean and the median or mode, respec-
tively. In all the above-mentioned cases, a positive sign signifies positive (or right) asymmetry,
while a negative sign means negative (or left) asymmetry. For the skewness coefficient with
the median, the strength of the asymmetry of the distribution may also be interpreted: if the
absolute value of the coefficient does not exceed 13 , we say that asymmetry is weak; if it falls
into the interval (13 ,

2
3) we denote it as medium; if the value exceeds 23 , we consider it to be

strong.
An alternative version of a coefficient which does not use the mean of the distribution may

be constructed based on the quartiles of the distribution, as:

A2 =
Q3 − 2 ·Med+Q1
Q3 −Q1

=
(Q3 −Med)− (Med−Q1)

Q3 −Q1
.

This coefficient measures the skewness for the middle 50% observations only: the whole
difference between the third and the first quartile is decomposed into differences between the
third quartile and the median and the difference between the median and the first quartile. If
the first element is larger, this means that the median is closer to the first quartile, making the
tail longer to the right (the distribution of the middle observations has right asymmetry). If
the second element is larger, this means that the median is closer to the third quartile, making
the tail longer to the left (the distribution of the middle observations has left asymmetry).
The strength of asymmetry may also be interpreted for this coefficient (with thresholds the
same as for A1).

In the surface area example, we have, for grouped data:

A ∼= 1.15

A1 ∼=
58.7− 53.23

18.2
≈ 0.3 for the mode and A1 ∼=

58.7− 54.85
18.2

≈ 0.24 for the median,

A2 ∼=
66.67− 2 · 54.85 + 46.09

66.67− 46.09
≈ 0.15,

which – in all cases – signifies weak positive asymmetry. This is true for the whole range of
values, as well as for the middle 50% observations. Please note that the signs of the different
coefficients may differ, if the shape of the distribution is less typical.
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