Probability Calculus Midterm Test
 December 5th 2014
 Version A

Please choose 5 out of the 6 problems below and solve each one on a separate piece of paper. Each problem will be graded on a scale from 0 to 10 points. Duration: 120 minutes.

1. A coin was tossed 9 times, and heads appeared exactly 4 times. In this case, what is the probability that
(a) a sequence of at least two heads (i.e. one head after the other in subsequent tosses) was obtained at least once?
(b) a sequence of four heads appeared?
2. The price level of a barrel of oil has been observed to follow a pattern: each day, the price falls by $\$ 1$ with probability $\frac{2}{3}$, and rises by $\$ 1$ with probability $\frac{1}{3}$. The daily price movements are independent.
(a) Calculate the probability that after five days the price will fall by $\$ 1$ with respect to the initial level.
(b) Calculate the probability that after five days the price will rise by $\$ 1$, if we know that after two days the price level was equal to the initial level.
(c) Are the events described in point (b), i.e.: the price rose by $\$ 1$ after five days and the price level after two days was unchanged, independent? Justify your answer!
3. A research center distributed a questionnaire to 300 small and 100 large firms, randomly chosen from a register, which was outdated by a year. According to data from the central statistical office, 0.2% of small companies and 0.5% of big companies declare bankruptcy in a given year. Using the Poisson theorem, provide
(a) an approximation of the probability that exactly one of the surveyed firms declared bankruptcy within the last year;
(b) an approximation of the probability that if exactly one of the surveyed firms declared bankruptcy within the last year, it was a small firm.
4. Let X be a random variable with density $g(x)=c e^{-2 x} \mathbf{1}_{[0, \ln 5]}(x)$, and $Y=e^{2 X}$. Find:
(a) The constant c;
(b) $\mathbb{P}(Y \in[1,25])$;
(c) The distribution of Y. Is Y continuous? Justify and if yes, provide the density function.
(d) The expected value of Y.
5. Let X be a random variable from a uniform distribution over $[-3,3], Y=X^{2}$ and $Z=3 X^{2}+2$. Find:
(a) The distribution of Y;
(b) The expected value and the variance of Y and Z.
6. An insurance company sold 1000 yearly car insurance policies. A policy will not lead to any capital sum payments with probability equal to $\frac{1}{2}$, will lead to one payment with probability equal to $\frac{1}{3}$ and to two payments with probability equal to $\frac{1}{6}$.
(a) Calculate the average overall number of payments from all policies of the insurance company.
(b) Under an additional assumption that the value of a capital sum payment is a random variable with a cumulative distribution function equal to

$$
F(t)= \begin{cases}0 & t<100 \\ \frac{t}{2000} & t \in[100,1000) \\ 1-\frac{1}{2}\left(1-\frac{t}{10^{4}}\right)^{2} & t \in[1000,10000) \\ 1 & t \geq 10^{4}\end{cases}
$$

calculate the average and the median value of a single payment, as well as the average overall payment from all policies.

Probability Calculus Midterm Test
 December 5th 2014
 Version B

Please choose 5 out of the 6 problems below and solve each one on a separate piece of paper. Each problem will be graded on a scale from 0 to 10 points. Duration: 120 minutes.

1. A coin was tossed 11 times, and heads appeared exactly 5 times. In this case, what is the probability that
(a) a sequence of at least two heads (i.e. one head after the other in subsequent tosses) was obtained at least once?
(b) a sequence of five heads appeared?
2. The price level of a barrel of oil has been observed to follow a pattern: each day, the price falls by $\$ 1$ with probability $\frac{1}{4}$, and rises by $\$ 1$ with probability $\frac{3}{4}$. The daily price movements are independent.
(a) Calculate the probability that after five days the price will rise by $\$ 1$ with respect to the initial level.
(b) Calculate the probability that after five days the price will fall by $\$ 1$, if we know that after two days the price level was equal to the initial level.
(c) Are the events described in point (b), i.e.: the price fell by $\$ 1$ after five days and the price level after two days was unchanged, independent? Justify your answer!
3. A research center distributed a questionnaire to 400 small and 200 large firms, randomly chosen from a register, which was outdated by a year. According to data from the central statistical office, 0.3% of small companies and 0.4% of big companies declare bankruptcy in a given year. Using the Poisson theorem, provide
(a) an approximation of the probability that exactly one of the surveyed firms declared bankruptcy within the last year;
(b) an approximation of the probability that if exactly one of the surveyed firms declared bankruptcy within the last year, it was a large firm.
4. Let X be a random variable with density $g(x)=c e^{-x} \mathbf{1}_{[0, \ln 10]}(x)$, and $Y=e^{X}$. Find:
(a) The constant c;
(b) $\mathbb{P}(Y \in[1,10])$;
(c) The distribution of Y. Is Y continuous? Justify and if yes, provide the density function.
(d) The expected value of Y.
5. Let X be a random variable from a uniform distribution over $[-2,2], Y=X^{4}$ and $Z=2 X^{4}-1$. Find:
(a) The distribution of Y;
(b) The expected value and the variance of Y and Z.
6. An insurance company sold 10000 yearly car insurance policies. A policy will not lead to any capital sum payments with probability equal to $\frac{3}{4}$, will lead to one payment with probability equal to $\frac{1}{8}$ and to two payments with probability equal to $\frac{1}{8}$.
(a) Calculate the average overall number of payments from all policies of the insurance company.
(b) Under an additional assumption that the value of a capital sum payment is a random variable with a cumulative distribution function equal to

$$
F(t)= \begin{cases}0 & t<200 \\ \frac{t}{4000} & t \in[200,2000) \\ 1-\frac{2}{5}\left(1-\frac{t}{10^{4}}\right)^{2} & t \in[2000,10000) \\ 1 & t \geq 10^{4}\end{cases}
$$

calculate the average and the median value of a single payment, as well as the average overall payment from all policies.

