Probability Calculus Retake Exam - 5.03.2015 group \mathbf{A}

Each problem should be solved on a separate piece of paper, you should return all 6. Solving 5 out of 6 problems correctly will give you the maximum number of points for the exam. Each problem will be graded on a scale from 0 to 10 points. Please sign each piece of paper with your name and student's number. Duration: 120 minutes.

1. There are two boxes; in the first one, there are 5 normal coins, and in the second one, there are 2 coins one normal, and one with heads on both sides. We randomly draw a box and then a coin from the box, and we toss the drawn coin twice. Calculate the probability that
(a) heads will appear at least once;
(b) we drew the special coin, given that there were heads in both tosses.
2. $2 / 3$ of workers in a corporation are rank-and-file, and the remaining $1 / 3$ are CEOs. The monthly earnings of a random ordinary worker have a uniform distribution over [1000, 2000], and the monthly earnings of a random CEO have a distribution given by the following CDF:

$$
F(t)= \begin{cases}0 ; & t<2000 \\ 1-\left(\frac{2000}{t}\right)^{2} ; & t \geqslant 2000\end{cases}
$$

Let X denote the monthly earnings of a random worker of the corporation.
(a) Find the CDF and the median of X.
(b) Calculate $\mathbb{E} X$.
(c) Determine whether X has a finite variance. Justify your answer!
3. Let (X, Y) be a random vector with density $g(x, y)=C \frac{1}{x^{4}} 1_{\{x \geqslant 1\}} 1_{\{x-1 \leqslant y \leqslant x+1\}}$.
(a) Find the constant C.
(b) Find the density of X and $\mathbb{P}(X>2)$.
(c) Calculate $\mathbb{E} X$ and $\operatorname{Cov}(X, Y)$.
4. Let D denote the income of Mr X , a salesman distributing cosmetics of company A. Assume this income depends on the sales of Mr X (25% of the worth of the sold products) and on the sales of salesmen encouraged by him to become distributors (10% of the worth of sold products). Assume further that the number of individuals encouraged by Mr X (denoted by K) is a random variable from a binomial distribution with parameters 6 and $\frac{2}{3}$, and that given k, the worth of monthly sales of k encouraged distributors is a random variable from a uniform distribution over $[0,1500 k]$, while the worth of sales of Mr X is a random variable with mean 2000. Calculate the average monthly earnings of $\operatorname{Mr} \mathrm{X}$ and $\operatorname{Cov}(K, D)$.
5. The worth of items purchased by clients in a clothing shop are independent random variables from a distribution with mean 100 and standard deviation equal to 100 . Approximate the probability that the total income from 400 clients will not exceed 36000 . Assume further that upon the first purchase, each client receives a 50% discount coupon for the next purchase. Approximate the probability that the total income from 500 clients (two visits each) will exceed 77500 .
6. In an economy the following mechanism of changes in workers' sector of employment may be observed (we assume that each employed individual may change the sector of employment once every half a year): if somebody is employed in agriculture, he will change to services with probability $\frac{1}{4}$ and with probability $\frac{1}{4}$ to manufacturing in the next period; if an individual is employed in manufacturing, he will switch to services with probability $\frac{1}{4}$ in the next period; if a worker is employed in services, in the next period he will switch to agriculture with probability $\frac{1}{10}$; in all other cases, the worker remains employed in the same sector. Calculate:
(a) the probability that an individual employed in services in the first half of 2015 will be employed in services in the first half of 2016 ;
(b) the average time which will pass until a worker employed in agriculture in 2015 will become employed in services;
(c) the long-term structure of employment in the economy.

