Mathematical Statistics, Final Exam, WNE UW, June 2010

Fill in the gaps ["......"]. 1 question (•) = 1 point; maximum = 12 points. Write down your answer after you have checked it; unreadable answers will be evaluated as wrong! You can use a calculator, statistical tables, notes and/or textbooks. Do not communicate; do not use mobile phones or computers; do not cheat!

NAME:

1. A survey was conducted to examine the relation between the level of education and tolerance. There were 400 people in the survey and the results were the following:

	tolerance	lack of tolerance	total
university graduate	70	30	100
high school graduate	100	100	200
no high school	30	70	100
total	200	200	400

• Compute the *test statistic* χ^2 to test for independence between the level of education and tolerance:

 $\chi^2 = \dots$

• Compute the p-value and interpret the result:

 $p = \dots$, therefore we reject/do not reject the null hypothesis that the row and column variables are independent of each other (mark the right answer).

Hint: The $\chi^2(2)$ distribution (chi-square with 2 degrees of freedom) is the exponential distribution Ex(1/2).

2. Let X_1, X_2, \ldots, X_n be *i.i.d.* random variables with probability density given by

$$f_{\theta}(x) = \begin{cases} \theta x^{\theta - 1} & \text{for } 0 < x < 1; \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$ is an unknown parameter.

• Compute the maximum likelihood estimator (MLE) of parameter θ , given the sample X_1, X_2, \ldots, X_n :

 $\hat{\theta}_{ML} = \dots$

• Compute the estimator of θ by the *method of moments* (MME):

 $\hat{\theta}_{\rm MM} = \dots$

- 3. 2 laboratories independently measured constant c: the speed of light in vacuum. Each laboratory computed a confidence interval for c at level $1 \alpha = 0.95$.
 - What is the probability that *at least one* of the two intervals contains the true value of *c*?
 - What is the probability that *both* intervals contain the true value of *c*?
- 4. Winnie the Pooh weighed 9 jars of honey and obtained the following results (in dag):

9, 9, 8, 14, 10, 10, 7, 13, 10.

Assume this is a random sample from a normal distribution $N(\mu, \sigma^2)$.

- Compute the *mean* and the *unbiased estimator of variance* from these data.
 - $\bar{X} = \dots$; $S^2 = \dots$
- Compute t-Student's confidence interval at the level of confidence

- 5. We observe a single random variable X from an exponential probability distribution $\text{Ex}(\theta)$ with unknown parameter θ . We test the null hypothesis $H_0: \theta = 2$ against the alternative $H_1: \theta = 1$. Let δ^* be the most powerful test at the level of significance $\alpha = 0.05$.
 - $\delta^*(x) = 1$ (the test rejects null) if x satisfies the following inequality:

.....

- The power of δ^* is equal to
- 6. Let S be the number of successes in a Bernoulli scheme with unknown probability of success θ . It is known that $\mathbb{E}S = n\theta$ and $\operatorname{Var}S = n\theta(1-\theta)$.
 - Consider $\hat{\theta} = \frac{S}{n}$ as an estimator of θ and compute its variance: Var $\hat{\theta} = \dots$;
 - Consider $\hat{\theta}(1-\hat{\theta})$ as an estimator of $\theta(1-\theta)$ and compute its bias:

 $\mathbb{E}\hat{\theta}(1-\hat{\theta}) - \theta(1-\theta) = \dots$

Hint: To compute the second answer it might be helpful to use the fact that $\mathbb{E}(\hat{\theta}^2) = (\mathbb{E}\hat{\theta})^2 + \operatorname{Var}\hat{\theta}$.