Fill in the gaps ["........."]. 1 question $(\bullet)=1$ point; maximum $=12$ points. Write down your answer after you have checked it; unreadable answers will be evaluated as wrong! You can use a calculator, statistical tables, notes and/or textbooks. Do not communicate; do not use mobile phones or computers; do not cheat!

NAME:

\qquad

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with probability density given by

$$
f_{\theta}(x)= \begin{cases}\theta x^{-\theta-1} & \text { for } x \geq 1 \\ 0 & \text { for } x<1\end{cases}
$$

(a Pareto distribution), where $\theta>0$ is an unknown parameter.

- Compute the maximum likelihood estimator (MLE) of parameter θ, given the sample $X_{1}, X_{2}, \ldots, X_{n}$:
$\hat{\theta}_{\mathrm{ML}}=$ \qquad
- Compute the estimator of θ by the method of moments (MME):

$$
\hat{\theta}_{\mathrm{MM}}=
$$

\qquad
2. A survey was conducted to examine the relation between the level of education and tolerance. There were 300 people in the survey and the results were the following:

	tolerance	lack of tolerance	total
university graduate	60	40	100
high school graduate	50	50	100
no high school	40	60	100
total	150	150	300

- Compute the test statistic χ^{2} to test for independence between the level of education and tolerance:
$\chi^{2}=$ \qquad
- Compute the p-value and interpret the result:
$p=$ \qquad , therefore we reject/do not reject the null hypothesis that the row and column variables are independent of each other (mark the right answer).

Hint: The $\chi^{2}(2)$ distribution (chi-square with 2 degrees of freedom) is the exponential distribution $\operatorname{Ex}(1 / 2)$.
3. 10 packets of butter have been weighed. The outcome of the measurement is listed below:

250; 240; 243; 247; 248; 249; 251; 242; 246; 244.
Assume this is an iid sample from $N\left(\mu, \sigma^{2}\right)$, with μ and σ unknown.

- Give a confidence interval for the average weight of one packet μ at the confidence level $1-\alpha=0.95$.
[...................;...................].
- Test the null hypothesis $H_{0}: \sigma \leq 5$ against the alternative hypothesis $H_{1}: \sigma>5$. Give the value of the test statistic, compare with the 0.95 -quantile of the appropriate χ^{2} distribution and make decision.
statistic $=$.................... Since the critical region is the interval ..., we decide to reject/do not reject the null hypothesis (mark the right answer).

4. Our quantity of interest is the percentage of graduates in Warsaw, who would get a job within 6 month after they completed their studies. A sample of graduates has been surveyed and it turned out S out of 400 got a job.

- Test the null hypothesis H_{0} that at least 60% of graduates get a job against the alternative that less than 60% of graduates get a job. The test at significance level $\alpha=0.05$ rejects H_{0} if S satisfies the following inequality:
S. \qquad
- If we observe the value $S=200$, a confidence interval at the confidence level $1-\alpha=0.95$ for the percentage of interest amounts to

Hint: Use the simplest method and approximate the binomial distribution by a normal distribution.
5. Let X_{1}, \ldots, X_{n} be an iid sample from a uniform distribution $\mathrm{U}(0, \theta)$ with the probability density function

$$
f_{\theta}(x)= \begin{cases}\frac{1}{\theta} & \text { for } 0 \leq x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$ is an unknown parameter. Consider estimators which are multiples of the sample mean: $\hat{\theta}=c \bar{X}$.

- Choose constant c such that $\hat{\theta}$ is an unbiased estimator of θ :
$\hat{\theta}=$ \qquad \bar{X}
- Compute the variance of the unbiased estimator obtained above.
$\operatorname{Var} \hat{\theta}=$ \qquad

Remark: We do not recommend to use this estimator because eg. MLE is much better in this model.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be two independent samples from the same normal distribution $\mathrm{N}(\mu, 1)$. Two statisticians indpendently perform the test of $H_{0}: \mu=0$ against the alternative $H_{1}: \mu>0$. Both statisticians apply the most powerful test at the significance level $\alpha=0,05$. One of them uses the sample of $X \mathrm{~s}$ whilst the other uses the sample of $Y \mathrm{~s}$. In fact, H_{0} is true (although our statisticians cannot know this).

- Compute the probability of the event that both statisticians will reject H_{0} : \qquad
- Compute the probability of the event that at least one of the statisticians will reject H_{0} :

