Mathematical Statistics, Final Exam, WNE UW, June 2009

Fill in the gaps ["......"]. 1 question (•) = 1 point; maximum = 12 points. Write down your answer after you have checked it; unreadable answers will be evaluated as wrong! You can use a calculator, statistical tables, notes and/or textbooks. Do not communicate; do not use mobile phones or computers; do not cheat!

NAME:

1. Let X_1, X_2, \ldots, X_n be *i.i.d.* random variables with probability density given by

$$f_{\theta}(x) = \begin{cases} \theta x^{-\theta-1} & \text{for } x \ge 1; \\ 0 & \text{for } x < 1 \end{cases}$$

(a *Pareto* distribution), where $\theta > 0$ is an unknown parameter.

• Compute the maximum likelihood estimator (MLE) of parameter θ , given the sample X_1, X_2, \ldots, X_n :

 $\hat{\theta}_{ML} = \dots$

• Compute the estimator of θ by the *method of moments* (MME):

 $\hat{\theta}_{MM} = \dots$

2. A survey was conducted to examine the relation between the level of education and tolerance. There were 300 people in the survey and the results were the following:

	tolerance	lack of tolerance	total
university graduate	60	40	100
high school graduate	50	50	100
no high school	40	60	100
total	150	150	300

• Compute the *test statistic* χ^2 to test for independence between the level of education and tolerance:

 $\chi^2 =$

• Compute the p-value and interpret the result:

 $p = \dots$, therefore we reject/do not reject the null hypothesis that the row and column variables are independent of each other (mark the right answer).

Hint: The $\chi^2(2)$ distribution (chi-square with 2 degrees of freedom) is the exponential distribution Ex(1/2).

3. 10 packets of butter have been weighed. The outcome of the measurement is listed below:

250; 240; 243; 247; 248; 249; 251; 242; 246; 244.

Assume this is an *iid* sample from $N(\mu, \sigma^2)$, with μ and σ unknown.

• Give a confidence interval for the average weight of one packet μ at the confidence level $1 - \alpha = 0.95$.

[.....].

• Test the null hypothesis $H_0: \sigma \leq 5$ against the alternative hypothesis $H_1: \sigma > 5$. Give the value of the test statistic, compare with the 0.95-quantile of the appropriate χ^2 distribution and make decision.

- 4. Our quantity of interest is the percentage of graduates in Warsaw, who would get a job within 6 month after they completed their studies. A sample of graduates has been surveyed and it turned out S out of 400 got a job.
 - Test the null hypothesis H_0 that at least 60% of graduates get a job against the alternative that less than 60% of graduates get a job. The test at significance level $\alpha = 0.05$ rejects H_0 if S satisfies the following inequality:

S.....

• If we observe the value S=200, a confidence interval at the confidence level $1-\alpha=0.95$ for the percentage of interest amounts to

[.....;]

Hint: Use the simplest method and approximate the binomial distribution by a normal distribution.

5. Let X_1, \ldots, X_n be an *iid* sample from a uniform distribution $U(0, \theta)$ with the probability density function

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & \text{ for } 0 \le x \le \theta; \\ 0 & \text{ otherwise,} \end{cases}$$

where $\theta > 0$ is an unknown parameter. Consider estimators which are multiples of the sample mean: $\hat{\theta} = c\bar{X}$.

• Choose constant c such that $\hat{\theta}$ is an unbiased estimator of θ :

 $\hat{\theta} =\bar{X}$

• Compute the *variance* of the unbiased estimator obtained above.

 $\operatorname{Var}\hat{\theta} = \dots$

Remark: We do not recommend to use this estimator because eg. MLE is much better in this model.

6. Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be two independent samples from the same normal distribution $N(\mu, 1)$. Two statisticians indpendently perform the test of $H_0: \mu = 0$ against the alternative $H_1: \mu > 0$. Both statisticians apply the most powerful test at the significance level $\alpha = 0, 05$. One of them uses the sample of Xs whilst the other uses the sample of Ys.

In fact, H_0 is true (although our statisticians cannot know this).

- Compute the probability of the event that *both* statisticians will reject H_0 :
- Compute the probability of the event that at least one of the statisticians will reject H_0 :